Pregled bibliografske jedinice broj: 972415
Does plant growing condition affects biodistribution and biological effects of silver nanoparticles?
Does plant growing condition affects biodistribution and biological effects of silver nanoparticles? // Spanish journal of agricultural research, 16 (2018), 4; e0803, 6 doi:10.5424/sjar/2018164-13580 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 972415 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Does plant growing condition affects biodistribution
and biological effects of silver nanoparticles?
Autori
Vinković, Tomislav ; Štolfa Čamagajevac, Ivna ; Tkalec, Monika ; Goessler, Walter ; Domazet Jurašin, Darija ; Vinković Vrček, Ivana
Izvornik
Spanish journal of agricultural research (1695-971X) 16
(2018), 4;
E0803, 6
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
phytotoxicity ; pepper ; plant uptake
Sažetak
Among the many different types, silver nanoparticles (AgNPs) are the most commercialized and applied engineered nanoparticles in a wide range of areas, including agriculture. Despite numerous studies on their safety and toxicity of AgNPs, data on their effect and interactions with terrestrial plants are largely unknown. This study aimed to investigate the effect of growing conditions on the response of pepper plants (Capsicum annuum L.) to citrate-coated AgNPs. Growth parameters, biodistribution, and defence response were examined in peppers grown hydroponically or in soil substrate. In addition, the effects of nano and ionic form of silver were compared. The leaves and stems of peppers grown in substrate showed a higher bioaccumulation compared to hydroponically cultivated plants. The nano form of silver accumulated to a higher extent than ionic form in both leaves and stems. Both silver forms inhibited pepper growth to a very similar extent either through hydroponic or substrate growing settings. Unlike other studies, which investigated the effects of unrealistically high doses of AgNPs on different plant species, this study revealed that vascular plants are also susceptible to very low doses of AgNPs. Both silver forms affected all parameters used to evaluate oxidative stress response in pepper leaves ; plant pigment and total phenolics contents were decreased, while lipid peroxidation and hydrogen peroxide level were increased in treated plants. Similar biological effects of both nano and ionic Ag forms were observed for both substrate and hydroponic growing systems.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Biologija, Interdisciplinarne prirodne znanosti, Poljoprivreda (agronomija)
Napomena
Bilateral Austrian-Croatian project No. WTZ-
Hr04/2012
POVEZANOST RADA
Ustanove:
Institut za medicinska istraživanja i medicinu rada, Zagreb,
Fakultet agrobiotehničkih znanosti Osijek,
Institut "Ruđer Bošković", Zagreb,
Sveučilište J. J. Strossmayera u Osijeku
Profili:
Ivna Štolfa Čamagajevac
(autor)
Monika Tkalec Kojić
(autor)
Tomislav Vinković
(autor)
Ivana Vinković Vrček
(autor)
Darija Domazet Jurašin
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus