Pregled bibliografske jedinice broj: 969257
Prediction of Euroleague Games based on Supervised Classification Algorithm k-Nearest Neighbours
Prediction of Euroleague Games based on Supervised Classification Algorithm k-Nearest Neighbours // Proceedings of the 6th International Congress on Sport Sciences Research and Technology Support - Volume 1: K-BioS / Pezarat-Correia, Pedro. ; Vilas-Boas, João Paulo ; Rivera, Octavio ; Cabri, Jan (ur.).
Setúbal: SCITEPRESS, 2018. str. 203-207 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 969257 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Prediction of Euroleague Games based on Supervised Classification Algorithm k-Nearest Neighbours
Autori
Horvat, Tomislav ; Job, Josip ; Medved, Vladimir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 6th International Congress on Sport Sciences Research and Technology Support - Volume 1: K-BioS
/ Pezarat-Correia, Pedro. ; Vilas-Boas, João Paulo ; Rivera, Octavio ; Cabri, Jan - Setúbal : SCITEPRESS, 2018, 203-207
ISBN
978-989-758-325-4
Skup
6th International Congress on Sport Sciences Research and Technology Support (icSPORTS 2018)
Mjesto i datum
Sevilla, Španjolska, 20.09.2018. - 21.09.2018
Vrsta sudjelovanja
Ostalo
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Basketball, Classification, Database Analysis, Euroleague, Information System, k-Nearest Neighbours, Machine Learning, Prediction
Sažetak
Machine learning becomes one of the top fields in world of ICT (Information and communications technology). In the last few decades machine learning has taken a big boost in sports. Sport fans are using machine learning in sport betting and sport managers are using it for player selection, performance evaluation and even in outcome prediction. This paper gives basketball outcome prediction algorithms using k-nearest neighbours (k-nn). Few methods of preparing data calculated with different k and time period for k-nn algorithm will be presented and closely explained. Feature selection will also be discussed and results based on feature selection will be presented.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kineziologija
POVEZANOST RADA
Ustanove:
Kineziološki fakultet, Zagreb,
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek