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Abstract Rocking stability of a rigid prismatic block standing on a rigid base

subject to a single-sine or a single-cosine wave acceleration function is exam-

ined. The stability for various slendernesses and sizes is assessed numerically,

where an improved coefficient capable of estimating the size effect is taken

into account. A number of relevant cases are validated experimentally, with a

specially designed set of rocking benchmark tests on a shaking table system.

Keywords rocking · restitution coefficient · stability · single-wave harmonic

excitation · overturning · experimental benchmark

1 Introduction

Rocking is an important mode of motion in many historic structures [8], but

also in various structural elements in modern industrial complexes [3]. There

is also a rising interest in utilizing rocking as a means for seismic isolation of
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2 N. Čeh, G. Jelenić

tall slender buildings [8]. For these reasons, it is useful to determine whether

a body subject to an excitation will rock (and finally settle due to energy

dissipation) or will overturn.

In-plane rocking of rigid prismatic blocks was first addressed by Housner

in 1963 [5]. He derived the nonlinear equation of motion of the block stand-

ing on a rigid base with a single degree of freedom - the angle of rotation.

He assumed that for slender blocks a linearised equation of motion is ap-

propriate and derived the analytical solutions for what he called the ’period

and frequency of rocking motion’, which turned out to be dependent on the

amplitude of rocking. Following Housner’s work, the analytical condition for

initiation of rocking and the minimum ground acceleration of a specific accel-

eration function necessary to overturn a block have been further derived from

the linearised equation of motion [16, 10, 11, 14, 5], while the fully nonlinear

equation of motion using the state-space procedure and built-in ODE solvers

has been addressed in [10, 11, 15, 4, 13, 9].

In an attempt to characterise rocking motion more completely, transient

and steady-state dynamic response of a single rigid block due to earthquakes

[14], random-noise excitations [6] and pulse-type excitations [4] have been in-

vestigated.

However, rocking of a single block due to a simple harmonic function, such

as a single sine or cosine wave, is still not characterised in the sense that the

real energy-loss during rocking is taken into account via the appropriate coef-

ficient of restitution. Furthermore, the overturning outcome during a certain

acceleration function is not experimentally validated.

For this reason, here we analyse the stability of a block during simple har-

monic ground acceleration function numerically and validate the results ex-

perimentally. The improved estimate of the restitution coefficient, introduced

independently by Kalliontzis et al. [7] and by Chatzis et al. [2], is employed.
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Title Suppressed Due to Excessive Length 3

The improved estimate, which is derived from the assumption that the resul-

tant impulse at the time of impact acts at some other point than the corner of

the block, proves to be a better approximation of the real restitution [1] than

the widely used Housner’s restitution [5].

The effect of the uncertainty of the position of the impact impulse to the

rocking stability due to sine- and cosine-wave excitation is addressed in [2].

The objective of this work is to derive safer conditions under which a block

overturns when subjected to a single sine-wave or cosine-wave acceleration,

than those available in the literature [8].

2 Problem description

2.1 Equations of motion and numerical algorithm

Rocking of a single rigid prismatic block due to an arbitrary horizontal base

acceleration function is described by the following equations of motion [5]

IAθ̈ +mgR sin (α− θ) +müR cos (α− θ) = 0 if θ > 0 (1)

IAθ̈ −mgR sin (α+ θ) +müR cos (α+ θ) = 0 if θ < 0 (2)

where θ is the angle of rotation, m is the mass of the block, IA = 4
3mR

2 is

its moment of inertia around either of the corners, α = tan−1 hb is its angle of

slenderness, h is the height and b is the width of the block, R = 1
2

√
b2 + h2, g

is the gravitational constant, ü is the ground acceleration function, while the

superimposed dots indicate time differentiation. Figure 1 shows free-body and

mass-acceleration diagrams for θ > 0.

Equation (1) can be linearised if we limit our research to only slender

blocks with small rotations. However, in order to describe rocking of blocks
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4 N. Čeh, G. Jelenić

Fig. 1 Free-body and mass-acceleration diagrams during rotation around contact point A
(FAx and FAy are the contact reactions)

Fig. 2 Ground acceleration functions examined

with arbitrary slenderness which can undergo large rotations, it is necessary

to use the fully nonlinear equation of motion.

In this work, rocking and overturning due to two simple harmonic acceler-

ation excitations - a single sine wave and a single cosine wave (see Figure 2) -

is examined. The acceleration function is described with its amplitude a0 and

angular frequency ω = 2π
tb

, where tb is the period of excitation.

2.2 Numerical integration

Equations (1) and (2) with acceleration function ü as shown in Figure 2 are

now solved numerically using the well-known Newmark’s trapezoidal rule [12]:

θ̇n+1 =
2

∆t
(θn+1 − θn)− θ̇n, (3)

θ̈n+1 =
4

∆t2
(θn+1 − θn)− 4

∆t
θ̇n − θ̈n, (4)
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Title Suppressed Due to Excessive Length 5

where ∆t is the time-step length, leading to

4

∆t2
(θn+1 − θn)− 4

∆t
θ̇n − θ̈n

+ p2 sin (α− θn+1) +
p2

g
ün+1 cos (α− θn+1) = 0 if θn, θn+1 > 0 (5)

4

∆t2
(θn+1 − θn)− 4

∆t
θ̇n − θ̈n

− p2 sin (α+ θn+1) +
p2

g
ün+1 cos (α+ θn+1) = 0 if θn, θn+1 < 0 (6)

where p =
√

3g
4R is the so-called frequency parameter.

At each time-step, the nonlinear equation is solved iteratively using the

Newton-Raphson iterative procedure. An impact detection procedure described

in [1] is built into the numerical algorithm used here. When at a time tn+1

either θn > 0 and θn+1 < 0 or θn < 0 and θn+1 > 0 occurs, the dynamic

equilibrium for this time step is repeated for an unknown time-step length ∆t′

rather than θn+1, under the conditions that θn+1 := 0.

The pre-impact angular velocity θ̇− and angular acceleration θ̈− are then

calculated as

θ̇− =
2

∆t′
(0− θn)− θ̇n (7)

θ̈− =
4

∆t′2
(0− θn)− 4

∆t′
θ̇n − θ̈n, (8)

the original time-step length ∆t is restored and the time-stepping procedure

switches to the next step and to the other equation of motion. At this point,

however, the angular velocity at the beginning of the first post-impact time

step has to be reduced taking into account appropriate restitution model.
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6 N. Čeh, G. Jelenić

Fig. 3 Impact position for calculating k needed in equation (10)

2.3 Restitution model

Two restitution descriptions are compared in this study, where the restitution

coefficient is defined as the ratio between the post-impact and pre-impact

angular velocities.

The classical Housner’s model [5], which assumes that the contact impulse

during impact takes place at the very edge of the block, defines the restitution

coefficient as

ηH = 1− 3

2
sin2 α. (9)

The modified restitution description, independently proposed by Kalliontzis’s

at al. [7] and Chatzis et al. [2], takes into account the fact that the contact

impulse may act at any point between the edges of the block. The resulting

restitution coefficient is defined as

ηM =
4− 3 sin2 α

(
1 + k2

)

4− 3 sin2 α (1− k2)
. (10)

The above equation follows the work by Kalliontzis et al. [7], where k = b
b/2 ,

and b is the distance of the point at which the contact impulse acts from the

midpoint of the bottom side of the block, as shown in Figure 3.

The two restitution formulas become increasingly similar with the increase

in block’s slenderness, but in general ηH significantly overestimates block’s

stability [1]. On the other hand, ηM involves an additional parameter, for

which a method to determine it has to be devised.
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Title Suppressed Due to Excessive Length 7

Fig. 4 Stability graph due to a single sine wave for blocks with h/b = 2.25

2.4 Rocking stability

Stability of the block is characterised based on whether the block overturns

or rocks in a stable fashion (and finally settles) during the excitation or after

it drops to zero. Rocking stability is assessed using the described numerical

procedure based on the nonlinear equation of motion by running the algorithm

multiple times for different excitation frequencies and amplitudes and docu-

menting the outcome in the frequency-amplitude space. In this way the areas

with the excitation conditions under which overturning occurs and those under

which rocking in stable fashion occurs are obtained. The boundary between

these areas in the case of sine-wave acceleration is presented in Figures 4 and

5 for two slenderness ratios using both restitution formulas (with k = 0.75

in case of ηM ). The results in Figures 4 and 5 and in the rest of the paper

are presented in terms of the normalised angular frequency ω
p on the horizon-

tal axis and the normalised acceleration amplitude a0
αg on the vertical axis.

These figures stress the importance of the improved restitution estimate ηM ,

as it is clear that ηH may seriously overestimate a block’s stability against

overturning.
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8 N. Čeh, G. Jelenić

Fig. 5 Stability graph due to a single sine wave for blocks with h/b = 4.5

It is usually assumed that such graphs can be applied to estimate rocking

stability of a block with slenderness angle α regardless of the size of the block.

This is acceptable if the restitution coefficient is independent of the size of

the block since an increase in the restitution coefficient causes a significant

increase in the overturning area [2], as can be seen when comparing the two

graphs either in Figure 4 or Figure 5.

A previous study of free rocking [1] has shown that the restitution coeffi-

cient decreases with the increase in block’s size. Following on from there, the

objective of this work is to assess stability of blocks of different geometries sub-

ject to the pulse excitation described with an improved restitution estimate

from [1] taken into account.

3 Rocking stability using an improved restitution estimate

Here we try to characterise the rocking more precisely using an estimate for k

in equation (10) obtained from the series of free rocking experiments reported

in [1].
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Title Suppressed Due to Excessive Length 9

Table 1 Geometry, ηH , and ηM for the analysed blocks

Block m [g] b [m] h [m] h
b α [rad] R [m] p ηH ηM

B3M 544.4 0.045 0.10125 2.25 0.4182 0.0554 11.524 0.7526 0.8106
B6M 1089.6 0.045 0.2025 4.5 0.2187 0.1037 8.423 0.9294 0.9472
B3L 1284.3 0.06 0.135 2.25 0.4182 0.0739 9.978 0.7526 0.8598
B6L 2569.2 0.06 0.27 4.5 0.2187 0.1383 7.294 0.9294 0.9617

3.1 Geometry

Stability of the blocks of two different slendernesses and two different sizes are

examined here so that both the slenderness effect and the size effect may be

investigated. The properties and the corresponding Housner’s restitution coef-

ficients of the four blocks examined in this study are shown in Table 1, where

the thickness of the blocks is equal to their width b. The actual denotation

used for the blocks follows that introduced in [1].

For the blocks in Table 1 the unknown parameter k necessary to calculate

ηM in (10) is obtained in [1] as k = 0.8608 for a set of nine medium-sized

blocks (b = 0.045 m) with slenderness ranging from h
b = 1.5 to h

b = 9.75 and

k = 0.7306 for the corresponding set of large blocks (b = 0.06 m), obtained as

average values. The corresponding ηM are shown in Table 1.

3.2 Single sine-wave acceleration

Rocking stability and overturning conditions for a rigid block due to a single

sine-wave acceleration excitation highly depend on the restitution coefficient.

The overturning condition obtained from the numerical procedure described

earlier using ∆t = 0.001 s and the Newton-Raphson convergence norm 1∗10−9

for the blocks and the corresponding restitution coefficients given in Table 1

are shown in Figures 6 and 7 for the blocks with slenderness ratio h
b of 2.25

and 4.5 , respectively.
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10 N. Čeh, G. Jelenić

Fig. 6 Stability graph for a single sine wave acceleration excitation for blocks with h
b

= 2.25:
B3M and B3L

Fig. 7 Stability graph for a single sine wave acceleration excitation for blocks with h
b

= 4.5:
B6M and B6L

3.3 Single cosine-wave acceleration

The overturning conditions for a rigid block due to a single cosine-wave exci-

tation acceleration obtained from the described numerical procedure vary only

slightly with variation in block’s size. Also, the overturning conditions are not

strongly dependent of the restitution coefficient, which can be seen in Figures

8 and 9 for the blocks with slenderness ratio h
b of 2.25 and 4.5 , respectively.
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Fig. 8 Stability graph for a single cosine wave acceleration excitation for blocks with h
b

=
2.25: B3M and B3L

Fig. 9 Stability graph for a single cosine wave acceleration excitation for blocks with h/b =
4.5: B6M and B6L

4 Experimental set-up

4.1 Contact conditions in the model

In order to avoid slipping and bouncing and to assure only rocking motion, a

specially designed system of tapes described in [1] is also used here (see Figure

10).
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12 N. Čeh, G. Jelenić

Fig. 10 System of tapes designed to avoid sliding and jumping of the block

4.2 Excitation and shaking table capacities

The excitation is experimentally performed by means of a biaxial shaking table

Quanser ST-III run by a LabWiev-based software, which controls the position

of the table.

The desired acceleration excitation function, which is a part of the equation

of motion in the simulations, should be integrated twice to get the position

excitation function and as such given to the shaking table for the experimental

tests. Due to the inertia of the table itself, the initial velocity of the system

can only be equal to zero and rise gradually after that. For this reason, we can

experimentally simulate either a cosine-wave acceleration excitation ü (t) =

a0 cos (ωt) leading to

u̇ (t) =
a0
ω

sin (ωt) , (11)

u (t) =
a0
ω2

[1− cos (ωt)] ,

or a sine-wave acceleration excitation ü (t) = a0 sin (ωt) leading to

u̇ (t) =
a0
ω

[1− cos (ωt)] , (12)

u (t) =
a0
ω

[
t− 1

ω
sin (ωt)

]
.

These functions are shown in Figure 11.
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Fig. 11 Sine- (left) and cosine-wave (right) acceleration excitation with the corresponding
velocity and position functions

Fig. 12 Two blocks of the same slenderness ratio but different size (left) on the shaking
table system Quanser ST-III (right)

The shaking table system (Quanser ST-III) has the total gait of 10.8 cm

in both directions, it can reach a velocity of 2.58 m/s and an acceleration of

3.21g with the load-mass roughly corresponding to our heaviest samples.

The experiments are carried out so that the two blocks of the same slen-

derness are put on top of the shaking table and excited at the same time with

exactly the same acceleration function, as can be seen in Figure 12.
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5 Experimental validation of the algorithm for sine-wave

acceleration

The set of four blocks - two bulky blocks with slenderness ratio h
b = 2.25 and

two slender blocks with slenderness ratio h
b = 4.5 - subjected to a sine-wave

acceleration function is chosen for experimental validation. The acceleration

function is input via a single sine-wave displacement function added to a linear

displacement function (12), which satisfies the condition of zero initial veloc-

ity of the shaking table, as described in the previous section. The sine-wave

excitation described in Section 4.2 is the only one chosen in the experimental

analysis because it is much more suitable for testing sensitivity to overturning

upon variation of the restitution coefficient (see Section 3.2).

In each experiment the displacement function actually performed by the

shaking table slightly differs from the input displacement function, owing to

the inertia of the table and the samples. The displacement is measured by a

linear encoder with one million counts per meter each 0.002 seconds. These

results are numerically differentiated with respect to time twice (using the mid-

point rule) to check for the ’real’ amplitude and frequency of the acceleration

function of the table. Furthermore, the acceleration is measured by a biax-

ial accelerometer embedded in the shaking table system each 0.002 seconds.

The results obtained from post-processing the encoder measurement and from

accelerometers measurement has shown to be close to the input values given

to the shaking table. For this reason the experimental results in the rest of

this work are presented with respect to the input amplitude and acceleration

function.

The experiments are performed for each acceleration amplitude starting

from the highest acceleration frequency and after each experiment resulting

in stable rocking the frequency is lowered. This is repeated until overturning
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Block B6M Block B6L

Fig. 13 Stability graph due to a single sine wave for blocks B6M and B6L with h/b = 4.5
(T - translation, O - overturning, R - rocking)

is reached. The experiments close to the boundary between overturning and

not-overturning regions are repeated at least three times and the outcome has

proven to be repeatable.

5.1 Slender blocks
(
h
b = 4.5

)

The experimentally obtained results for both slender blocks B6M and B6L

are shown in Figure 13, along with the simulation results with the average

parameter k for each size of the block. These experiments strongly validate

the numerically obtained overturning conditions with the restitution coefficient

as reported in [1] based on the free rocking tests.

The shaking table system limit is declared as 3.21g but, even before reach-

ing the limit, the actual acceleration output starts to resemble a double con-

stant function more than a single sine-function. This prevents us from checking

the overturning conditions for the amplitudes of acceleration functions larger

that cca 25 m
s2 ≈ 2.55g (black dashed line in Figure 13.

In Figure 14 the experimental results are also compared to the simulation

results with the parameter k taken as the exact value obtained for that specific
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Block B6M Block B6L

Fig. 14 Stability graph due to a single sine wave for blocks B6M and B6L with h/b = 4.5
(T - translation, O - overturning, R - rocking)

block in the previous free-rocking study [1] (k = 0.8241 for B6M, k = 0.7214

for B6L). The boundary between overturning and non-overturning regions has

now somewhat changed - specifically, the overturning area is noticeably larger

for the smaller block, but for the acceleration range tested, the experimental

results compare equally well with the simulation results.

5.2 Bulky blocks
(
h
b = 2.25

)

The experimentally obtained results for both bulky blocks B3M and B3L are

shown in Figure 15 along with the simulation results with the average resti-

tution for each size from [1] taken into account. The experimental results

strongly validate the simulation results in case of the larger block B3L. How-

ever, the smaller block B3M overturns in the experiments in the area where

the simulations show that stable rocking should occur.

In Figure 16 the experimental results are again compared to the simulation

results with the exact value of the parameter k for each block from the free-

rocking study in [1] (k = 0.7595 for B3M, k = 0.7259 for B3L). The overturning
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Block B3M Block B3L

Fig. 15 Stability graph due to a single sine wave for blocks B3M and B3L with h/b = 2.25
(T - translation, O - overturning, R - rocking)

Block B3M Block B3L

Fig. 16 Stability graph due to a single sine wave for blocks with h/b = 2.25 (T - translation,
O - overturning, R - rocking)

area for block B3M is now substantially larger and such a simulation agrees

with the experimental results much better.
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6 Discussion and conclusion

A numerical procedure to obtain overturning conditions for a single rigid block

rocking on top of a rigid base, without sliding or jumping, due to a single

harmonic wave excitation acceleration is developed and validated against ex-

periments. The code involves an impact detection procedure, and takes into

account energy loss during each impact of the block with the base via a resti-

tution coefficient. Both the well-known Housner’s restitution coefficient [5], a

recently reported modified restitution coefficient [7, 2] are analysed for their

predictive power as stability estimates. The actual point of impact, needed in

the latter, is taken from a free rocking series of tests in [1].

A series of controlled experiments with aluminium blocks on a shaking

table subjected to a single sine-wave acceleration function is designed and

carried out. The experiments are conducted for two bulky blocks (slenderness

h
b = 2.25) and two slender blocks (slenderness h

b = 4.5) of different sizes.

The experimental validation proves that Housner’s restitution formula is

overly liberal and should be avoided in practical use. The modified formula

[7, 2] is clearly a better fit to describe real energy loss during rocking, and is

strongly encouraged if the position of the impact impulse may be appropriately

estimated. In this work this has been performed in conjunction with the free

rocking tests conducted earlier.

The simulation involving larger blocks and the restitution coefficient [7, 2]

with the additional parameter obtained in this way agree with the experiment

very nicely, in contrast with the results using the original Housner’s restitution,

which is particularly visible for the bulky block.

The simulation involving smaller blocks is less precise but still supportive

of the use of the modified restitution formula. It also shows that the method
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to estimate the impact position should be improved, which is what we plan to

address in our future work.
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