Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 967510

The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations


Picek, Stjepan; Heuser, Annelie; Jović, Alan; Bhasin, Shivam; Regazzoni, Francesco
The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations // IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019 (2018), 1; 209-237 doi:10.13154/tches.v2019.i1.209-237 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 967510 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations

Autori
Picek, Stjepan ; Heuser, Annelie ; Jović, Alan ; Bhasin, Shivam ; Regazzoni, Francesco

Izvornik
IACR Transactions on Cryptographic Hardware and Embedded Systems (2569-2925) 2019 (2018), 1; 209-237

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Profiled side-channel attacks ; Imbalanced datasets ; Synthetic examples ; SMOTE ; Metrics

Sažetak
We concentrate on machine learning techniques used for profiled side-channel analysis in the presence of imbalanced data. Such scenarios are realistic and often occurring, for instance in the Hamming weight or Hamming distance leakage models. In order to deal with the imbalanced data, we use various balancing techniques and we show that most of them help in mounting successful attacks when the data is highly imbalanced. Especially, the results with the SMOTE technique are encouraging, since we observe some scenarios where it reduces the number of necessary measurements more than 8 times. Next, we provide extensive results on comparison of machine learning and side-channel metrics, where we show that machine learning metrics (and especially accuracy as the most often used one) can be extremely deceptive. This finding opens a need to revisit the previous works and their results in order to properly assess the performance of machine learning in side-channel analysis.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Stjepan Picek (autor)

Avatar Url Alan Jović (autor)

Poveznice na cjeloviti tekst rada:

doi tches.iacr.org

Citiraj ovu publikaciju:

Picek, Stjepan; Heuser, Annelie; Jović, Alan; Bhasin, Shivam; Regazzoni, Francesco
The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations // IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019 (2018), 1; 209-237 doi:10.13154/tches.v2019.i1.209-237 (međunarodna recenzija, članak, znanstveni)
Picek, S., Heuser, A., Jović, A., Bhasin, S. & Regazzoni, F. (2018) The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019 (1), 209-237 doi:10.13154/tches.v2019.i1.209-237.
@article{article, author = {Picek, Stjepan and Heuser, Annelie and Jovi\'{c}, Alan and Bhasin, Shivam and Regazzoni, Francesco}, year = {2018}, pages = {209-237}, DOI = {10.13154/tches.v2019.i1.209-237}, keywords = {Profiled side-channel attacks, Imbalanced datasets, Synthetic examples, SMOTE, Metrics}, journal = {IACR Transactions on Cryptographic Hardware and Embedded Systems}, doi = {10.13154/tches.v2019.i1.209-237}, volume = {2019}, number = {1}, issn = {2569-2925}, title = {The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations}, keyword = {Profiled side-channel attacks, Imbalanced datasets, Synthetic examples, SMOTE, Metrics} }
@article{article, author = {Picek, Stjepan and Heuser, Annelie and Jovi\'{c}, Alan and Bhasin, Shivam and Regazzoni, Francesco}, year = {2018}, pages = {209-237}, DOI = {10.13154/tches.v2019.i1.209-237}, keywords = {Profiled side-channel attacks, Imbalanced datasets, Synthetic examples, SMOTE, Metrics}, journal = {IACR Transactions on Cryptographic Hardware and Embedded Systems}, doi = {10.13154/tches.v2019.i1.209-237}, volume = {2019}, number = {1}, issn = {2569-2925}, title = {The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations}, keyword = {Profiled side-channel attacks, Imbalanced datasets, Synthetic examples, SMOTE, Metrics} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font