Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 966729

Introduction to fractal analysis of orbits of dynamical systems


Resman, Maja; Žubrinić, Darko; Rolin, Jean- Philippe; Mardešić, Pavao; Vlah, Domagoj; Županović; Vesna
Introduction to fractal analysis of orbits of dynamical systems // Zagreb Dynamical Systems Workshop 2018 / Resman, Maja (ur.).
Zagreb, 2018. str. 10-10 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 966729 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Introduction to fractal analysis of orbits of dynamical systems

Autori
Resman, Maja ; Žubrinić, Darko ; Rolin, Jean- Philippe ; Mardešić, Pavao ; Vlah, Domagoj ; Županović ; Vesna

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
Zagreb Dynamical Systems Workshop 2018

Mjesto i datum
Zagreb, Hrvatska, 22.10.2018. - 26.10.2018

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
box dimension, multiplicity, bifurcation

Sažetak
In this talk I give the initial results concerning analysis of epsilon-neighborhoods of orbits of dynamical systems The idea comes from the fractal geometry, while the motivation comes from the 16th Hilbert problem. It is of interest to determine how many limit cycles can bifurcate from a given limit periodic set in a generic unfolding. The cyclicity is classically obtained by studying the multiplicity of fixed points of the Poincare map. We establish a relation between the cyclicity of a limit periodic set of a planar system and the leading term of the asymptotic expansion of area of "- neighborhoods of the Poincare map of an orbit. A natural idea is that higher density of orbits reveals higher cyclicity. The box dimension could be read from the leading term of the asymptotic expansion of area of "- neighborhood. In this talk I will concentrate on weak focus as a simplest case for the study. Furthermore, shortly I will talk about different directions of research coming from that idea: classi cations of Dulac maps, slow-fast systems, oscillatory integrals and fractal zeta functions.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ 2285

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb


Citiraj ovu publikaciju:

Resman, Maja; Žubrinić, Darko; Rolin, Jean- Philippe; Mardešić, Pavao; Vlah, Domagoj; Županović; Vesna
Introduction to fractal analysis of orbits of dynamical systems // Zagreb Dynamical Systems Workshop 2018 / Resman, Maja (ur.).
Zagreb, 2018. str. 10-10 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
Resman, M., Žubrinić, D., Rolin, J., Mardešić, P., Vlah, D., Županović & Vesna (2018) Introduction to fractal analysis of orbits of dynamical systems. U: Resman, M. (ur.)Zagreb Dynamical Systems Workshop 2018.
@article{article, author = {Resman, Maja and \v{Z}ubrini\'{c}, Darko and Rolin, Jean- Philippe and Marde\v{s}i\'{c}, Pavao and Vlah, Domagoj}, editor = {Resman, M.}, year = {2018}, pages = {10-10}, keywords = {box dimension, multiplicity, bifurcation}, title = {Introduction to fractal analysis of orbits of dynamical systems}, keyword = {box dimension, multiplicity, bifurcation}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Resman, Maja and \v{Z}ubrini\'{c}, Darko and Rolin, Jean- Philippe and Marde\v{s}i\'{c}, Pavao and Vlah, Domagoj}, editor = {Resman, M.}, year = {2018}, pages = {10-10}, keywords = {box dimension, multiplicity, bifurcation}, title = {Introduction to fractal analysis of orbits of dynamical systems}, keyword = {box dimension, multiplicity, bifurcation}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font