Pregled bibliografske jedinice broj: 95962
Convex Optimization in Training of CMAC Neural Networks
Convex Optimization in Training of CMAC Neural Networks // Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 42 (2001), 3-4; 151-157 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 95962 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Convex Optimization in Training of CMAC Neural Networks
Autori
Baotić, Mato ; Petrović, Ivan ; Perić, Nedjeljko
Izvornik
Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije (0005-1144) 42
(2001), 3-4;
151-157
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
CMAC neural networks; convex optimization; identification; control
Sažetak
Simplicity of structure and learning algorithm plays important role in a real-time application of neural networks. The Cerebellar Model Articulation Controller (CMAC) neural network, with associative memory type of organization and Hebbian learning rule, satisfies these two conditions. But, Hebbian rule gives poor performance during on-line identification, which is used as a preparation phase for on-line implementation. In this paper we show that optimal CMAC network parameters can be found via convex optimization techniques. For standard l-2 approximation this is equivalent to the solution of Quadratic Program (QP), while for l-1 or l-inf approximation it is enough to solve Linear Program (LP). In both cases physical constraints on parameter values can be included in an easy and straightforward way.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- The INSPEC Science Abstracts series