Pregled bibliografske jedinice broj: 958991
Scaffolding Assembled Genomes with Long Reads
Scaffolding Assembled Genomes with Long Reads, 2018., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 958991 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Scaffolding Assembled Genomes with Long Reads
Autori
Jurić, Antonio
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
20.09
Godina
2018
Stranica
49
Mentor
Šikić, Mile
Neposredni voditelj
49
Ključne riječi
bioinformatics, consensus, genom assembly, deep learning
Sažetak
Development of tools for genome assembling with enough precision to be useful in practice is still an open problem. Third generation sequencers allow genome assembly with smaller fragmentation and high accuracy. In this work, we try to improve the final accuracy of the assembled genome using deep learning techniques. Trained convolutional deep network polishes errors in the assembled genome by learning the correct bases, insertions and deletions patterns. Networks are prepared to be used with Pacific Biosciences and Oxford Nanopore data. Current results show that sometimes models slightly improve, sometimes slightly degrade consensus quality, but there is still a room for progress since there are a lot of untested ideas which are described in the end of the thesis.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mile Šikić
(mentor)