ࡱ> BDAyY <bjbjWW p==3] b b b $ P , \ 'jz : l l >~,8!:!:!:!?y!i$Y'$8),+}'Qb ">}' l z  Rl b 8! 8!^"@ "b 8! ^ Yk'V  !&Meal Planning in boarding schools in Croatia using optimisation of food components J. Gajdoa, S. Vida ek & }. Kurtanjek Faculty of Food Technology and Biotechnology University of Zagreb, Croatia Abstract The energy and nutrition allowances in boarding school restaurants are compared with the RDA recommendation. In 15 boarding schools in Zagreb with a population of 1117 students the daily meals have been analysed. The analyses show that the daily energy intake is higher then it is recommended: 15% higher for young men and 30% for young women. Share of carbohydrates and fats are not in proportion with the RDAs. Application of mathematical modelling and linear programming enable correction of meal planning and elimination of differences in the nutritional content with minimisation of meal costs. Meal optimisation has improved the share of proteins (10-15%), carbohydrates (>55%) and fats (<30%). Economical effect of optimisation is an average the range decreasing of a meal price in of 9-16%. Key words: linear programming, meal planning, optimisation, boarding schools Introduction Healthful nutrition is a primary factor for normal physical and psychological development of young people in their adolescence age.1 Teenagers import less amount of vegetable, fruit, corn and milk products.2, 3 Related to that fact, share of vitamins (A, B6, E, D, C) and minerals (Fe, Mg, Zn and Ca) is insufficient if the results have been compared with recommendations for teenagers.3, 4 Analysed are the energy and nutrition content of meals in Croatian boarding schools. Obtained results have been used for meal optimisation compared to RDA recommendations for the examined population group.4, 5, 6 Optimisation is performed using method of linear programming with LINDO program. The main goal of meal planning was price minimisation and simultaneous nutrition balancing.7, 8 Use of LINDO program in optimisation In optimisation models it is important to consider the maximum and minimum value for a component (variable) that will be observed. Limitations are given in recommendation table. In Croatia are used RDA recommendation tables that contain daily recommendation of energy, proteins, vitamins and minerals for different age groups and gender. Considering the number of variables (fats, proteins, carbohydrates, vitamins: A, D, C etc.) a superior solution is expected respectively hither to the really optimal meal that distinguish with quality and quantity. The goal function is a linear function of more variables, and the system-limited conditions are a system of liner equations and inequalities with more variables.8, 9 Amount of required carbohydrates and fats are calculated from the recommendation share of separated food components in the entirely energy.10, 11 Intakes of energy, proteins, fat, carbohydrates and vitamin A are limited with the minimum and maximum value per day. Hydro soluble vitamins (B complex and vitamin C) are limited only with the minimum value. In studieded models the percent of losses for vitamins and minerals has been considered. Mathematical models Three model types are compared for young men and women that are living in Croatian boarding schools. The objective function in all models is the minimum of the price of daily menu.10 Model 1: Evaluation of energy and nutritive value in weekly boarding school meals- number of serving of some foodstuff group is noted and that part of the model is constant. Unless the solutions are not found, respectively the energy and nutrition intake does not satisfy the recommendations for young men and women, then is necessary to define deviate measurements and dimension of deviation. Determination of nutrients during the processing are calculated and insert into the constraints as well as increasing prices of meals (energy required for cooking, baking etc.). Model 2: Model for weekly meal planning using processed and non-processed food tables- This model presents the structure of optimised menu for a week and his content of nutrients and energy. Recipes are used from the internal normatives used in Croatian boarding schools.12 The method: weight inventory method was used for weight of meal components (meat, vegetable, salad, biscuit, bread, etc.).13 Calculation of material share in energy support Intake of nutrients for a population group (o) is a sum of product of nutrient contents from a food group (j) and consummation of foodstuff (i) by a population group (o)  EMBED Equation.3  (1) i=1,,I; j=1J; o=1O. Where the number of foodstuff is denoted by J, number of nutrient is I, and number of population groups is O. The goal function is defined by:  EMBED Equation.3  (2) The objective function (fmin) represents price minimum of a daily nutritional intake what means that the sum of products of (c) and nutrition intake (s) will be minimised.  EMBED Excel.Sheet.8  Figure 1. Some vitamin and mineral contents in average boarding school meals and also optimised meals, related to RDA recommendations, for young men and women accommodated in boarding schools. Table 1. Daily intake of energy and nutrients in average boarding school meals compared with RDA recommendations  EnergyGirlsBoys and nutrients RecommendationsPercentage RecommendationsPercentage / per dayof digression (%)of digression (%)Energy / kJ10120 + 32.813800 + 15.3Proteins / g44-82.5 + 49.859-112,4 + 25.4Fats / g61.2-73.3 + 85.183.3-100 + 40.1Carbohydrates / g302.5-341 + 13.7412.5-465 + 9.1Ca / mg1200 - 5.91200 + 1.0Fe / mg15 + 48.712 + 150.0Vitamin A / g800-914.3 + 5.11000-1100 + 12.6Vitamin B1 / mg1.1 + 88.21.5 + 60.0Vitamin B2 / mg1.3 + 68.51.8 + 38.9Niacin / mg15 + 54.020 + 35.0Vitamin C / mg60 + 60.060 + 65.0 Figure 2. Share of proteins, fats and carbohydrates in average boarding school meals and in meals that are obtained after using linear optimisation; comparison with RDAs. (NO - not optimised meals ; TO optimised meals) Discussion Analyses of nutrient and energy contents in boarding school meals on a sample of 15 boarding schools and 1117 students that live in boarding schools show a deviation from RDA recommendations (Fig. 1 & Fig.2). Important to observe is the content of calcium that is negative in the no-optimised meals for young women.14, 15 High content of all nutrients-positive digression (except calcium) explains the increasing energy intake. Content of energy for young women is 30% higher than it is recommended (RDAs), and for young men the energy content has also a positive digression of 15% (Table 2.). The share of proteins fills 15% of the total energy content what is in the edge of recommendations (recommended 10-15%).11 Too high is the share of fats that are represented with 35% in the daily boarding school meals of young women and young men (recommended 25-30%).11 The share of carbohydrates is on the under edge of RDAs and the average value is 50% (recommended 50-60%).4, 11 Intake of iron is very high, what is 50% higher from RDA recommendations for young women and 150% higher from RDAs for young men. This is a result of high representation of a meat group and green vegetables. Share of calcium does not meet the RDAs for girls (94% of recommendation is met) but for boys the recommendations are in accordance with the recommendations. The recommendations for young men and women are 1200 mg, and the share difference in meals for young men and women is a result of bread consummation (boys consume two times more bread then girls).10 The analyses show that content of vitamins varies (Fig. 1). Vitamin A as a vitamin soluble in fats can show a toxic result if the intake is too high by causing headache, sickness and fretfulness, and it is very important to maintain it content approximate to the RDAs.4 Other vitamins that have been observed (B complex and vitamin C) are hydro soluble.7 Intake of hydro soluble vitamins is high especially in the daily menu for girls (40% higher then RDAs) because the meat group contents high share of those vitamins. Intake of vitamin C is also high but its real share in the meal is set for discussion because his high tenderness on processing and light. Fruits and vegetables that can be consumed in the raw form have lost a share of vitamins depending of storage way and it expose to brightness. Considered was the percentage of processing losses and losses that are an effect of oxidation and storage to avoid irregularity by the meal optimisation. For the examined group of young men and women, age 14-18 have been planed new daily and weekly by using linear programming. Results of linear optimisation are decrease of energy intake (to be in domain of RDAs with (10% for young men and women) and the share of carbohydrates, fats and proteins were also optimised (Fig. 2). Optimised meals have a higher share of carbohydrates (about 55%) and attenuate share of fats (25-30%). Share of minerals in optimised meals is changed especially in the meals for girls.11 Suggested example of weekly nutrition includes optimal intake of calcium (Fig.1) what is a result of increasing import of milk and milk products (model OT1), what is very important if it is known that sufficient intake of calcium prevents osteoporosis.11 Namely the results of other studies show that about 90% of young women do not import daily-recommended allowances (of 1,2 g) of calcium. The percent of teenager girls that consume less than 2/3 of recommendations is growing with ageing.15 Decreasing the meat group decreases intake of iron, vitamins of B complex and vitamin A. Intake of vitamin C is still high but recommendations are sufficient only to prevent illness and the overflow is eliminated with extraction.1 Results of comparing the prices for weekly menus for teenagers that are accommodated in boarding schools show that optimisation of the meals has extensively decreased the meal price what is primary caused by decreasing the share of the meat group. Conclusions Highest overflow comparing with RDA recommendations shows iron, reasonable overflow show vitamins of B-complex and vitamin C, and mean overflow is detected by amount of vitamin A. Insufficient amount of calcium are detected in boarding school meals for girls. Using optimisation in meal planing shows that in the optimised meals the energy amount is in proportion with RDAs. The share of proteins is now 15%, share of carbohydrates is over 55% and fats are under 30% in total energy intake, what is in accordance with recommendations. The amount of vitamin B complex and iron is lower considering the non-optimised meals in boarding schools. The main result is the economic result of optimisation: an average decreasing of prices for boarding school meals from 9 till 16% (depend on a boarding school type). References 1. Munoz KA, Krebs-Smith SM, Ballard-Barbash R, Cleveland LE (1997) Food intakes of US children and adolescents compared with recommendations. Pediatrics; 100: 323-329. 2. Zive MM, Nicklas TA, Busch EC, Myers L, Berenson GS (1996) Marginal vitamin and mineral intakes of young adults. Journal of Adolescent Health; 19: (1): 39-47. 3. Harel Z, Riggs S, Vaz R, White L, Menzies G (1998) Adolescents and calcium: what they do and they do not know and how much they consume. Journal of Adolescent Health; 22: 225-228. 4. Recommended Dietary Allowances (1989). National Academy of Science: National Academy Press, Washington DC. 5. Kai-Rak A, Antoli K (1990) Tables of food compounds and drinks, Institute for health protection of Republic of Croatia. 6. Nutritive value of Am. Foods Handbook No. 456. (1975) Washington DC: US Department of Agriculture. 7. Karg G, Kreutzmeier S (1994) Culinar Arts and Science: An information system for determining and optimal nutritional intake. London, 285-291. 8. LINDO Systems Inc (1999): LINDO Systems Inc. Optimisation Modelling with LINDO. 1415 North Dayton Street: Chicago, Illinois 60622, USA. 9. Dantzig GB, Thapa MN (1997) Linear programming. Springer-Verlag. New York. 10. Gajdo, J (1998): Nutritional assessment, modelling and optimisation of meal planning in boarding schools. Faculty of food technology and biotechnology University of Zagreb. 11. Pemberton CM, Moxness KE, German JM, Nelson JK, Gastineau CF (1988) Mayo Clinic-Diet Manual, a Handbook of Dietary Practices. B.C. Decker INC, Toronto, Philadelphia. 12. Internal normative, recipes (1998) Boarding schools, Zagreb. 13. Oltersdorf US (1995) Ern(hrungsepidemiologie. Verlag Eugen Ulmer, Stuttgart. 14. Brown ML (1990) Present Knowledge in Nutrition. International Life Sciences Institute Nutrition Foundation. Washington, DC. 15. Albertson AM, Tobelman RC, Marquart L (1997) Estimated dietary calcium intake and food sources for adolescent females. Journal of Adolescent Health; 20: 20-26.  Page  PAGE 3 of  NUMPAGES 1  FILENAME gajdos-ispravak1 Created on  CREATEDATE 14.09.01 15:00 Last printed  PRINTDATE 12.09.01 11:39  PAGE 4 PAGE 3 1999- 2000Branche Belge de la Socit de Chimie Industrielle Page  PAGE 1 of  NUMPAGES 1 Created on  CREATEDATE 14.09.01 15:00 (C) 2001 Croatian Society of Biotechnology Current Studies of Biotechnology, volume II - Environment,.ISBN 953-98094-3-6  EMBED Excel.Sheet.8  ? @  ! N O V Z NR0"$p*,ξjCJEHOJQJU)jWx> B*CJOJQJUVhmHnHjCJOJQJU CJOJQJh6;H*H*56B*hnH  5B*hnH  B*hnH 6B*OJQJhnH  6B*hnH 56OJQJhnH 6OJQJhnH hnH 2ZLo*? @ M \ S%$ZLo*? @ M \ S%icdh-9:DEWXjkw} ,6EO_`hm~dicdh(($$$Z[sth:Dkqxm5B*CJhmH nH 6B*CJhmH nH 56B*CJhmH nH 6B*CJhmH nH 56CJOJQJhnH  5hnH  jUjL? UVmHhnH 6B*H*hnH  j@EHUj֑L? UVmH jU 6B*hnH  B*hnH  CJOJQJjCJOJQJU)h-9P$.$$4F$$$$4$$ 9:DEWXjkw}tqqq$C$$r $$C$$r  q'_brN\  8 > !!`"b"""% %&&m&n&))**h+i+++,,--.../011/323زB*CJhnH H* jH*hnH  5hnH  jU 56hnH  B*hnH 5B*CJH*hmH nH 5B*CJhmH nH B*CJhmH nH E qqC$$r $$$C$$r  ,6EO_`hm~   C$$r $$$~  @Trt (0NPhn  @ Q!!" %&'/((G)*+,--../&0021111H222/334456966V77V89A99:::::::::  # a @Trt (0NPhnC$$r $$$  @ Q!!" %($$$C$$r $ %&'/((G)*+,--../&0021111H222/334596$2333396<66A9]9^9:::::::::::::::::::::;; ; ;;;(;);8;9;D;E;S;T;U;Z;[;a;b;c;d;e;g;h;n;o;p;q;r;;<mH  0J'<mH0J'<j0J'<U<mH< j<U<CJ<CJhmHj<CJUhnH <CJhnH mH  jCJB*CJhnH  B*hnH 6CJCJ<966V77V89A99:::::::::::U;V;W;X;Y;$$Tl]#$$$# $$l7#$$#$$:::::::::;(;E;S;U;V;W;X;Y;Z;b;c;d;e;f;g;o;p;r;;;;;;;;;;;+<y<z<{<|<<<<<<<<<<3Y;Z;e;f;g;r;;;;;+<y<z<{<<<<<<$$#$$$&`#$&#$;;;;;;;;;;;;;;;;;;;;;;{<|<<<<<<<mH  j Uj L? UVmH jUhmHjUhnH hnH  <CJmH . 00&P g. A!j "j # $ %* 00&P g. A!e "e #$%`!@ݒ(uc2B08Dv#xZklU>ww}?"b `1[0j$i[hBwiXQ!-UL *IcRH-13;3:9{ιw̬T7,ȄR- - A#2y.> W%?&akJT^'۰^dE%-ü-V xZ=zh ]K" rje9[~vdۑ|Hӂblp; oP.Sݹ?F}Ժܫ._<կZ6fOHձLU}j1VL \fQ)_/ezؚMDGކzxHcfg9 Bg>| :]O3chddohh(7 e&ؓ{(,<8#jj͗Q%ɸj%,<YoA]˱ m%_Pw3΂g݋ msC>T3jC YfT*̫[)PVlW|OTӯa(T֏]pp쨬B`(2g)(=S3 #"d(93Ī.H*`4`.ͼdAP8<7 }gۜ}sw-ƙWC g*W8 | *ǒE ,c(I*ǎpp?Mj`+*`,<㵭mWFE^XAT76Z7BU:?w5Vwʌ"`%{=.ײMmA_%Gm*ⰷF֩)q$kcӎAJ^Q둞K޻p^~C fm"Ԋ(" UWd"lO!ಃ*^.}ovQ r%sΗ% :Ľ%p!Bp6k8"CԜOH߿}p )Qs$} d8Ľ 8 y/E:^ 9? jgg}>C?;n }V|'$+_ ǒ]=s׵l lo Z3򷎩dE\'T'{}ǗTY^S+.7q~~똫o(M&0y-k?r\L=FRAq6ز5Rx L&GҢXwAb'e 5X* %s5%W jmcu*%)S34#z"jU숎v7B(ڈ~H-ЦfG[ƳMExLPiK\^~O6.D0F^i,N!Tih WȐ|eȭgH ^`H *^fHZv2$Gۏk ɷݎ G{?r3$ߍv7rG–cOG19p0~;ϐ ڃ]dH W!aaH.w{K͐Ɛ|9-dH~ K[*W!#0a=B튐}Y z>-%P(6J+bH~ [eH "ΐ^"!.fHN2$) ɟCr_3cӼ.qpEiQQ"WN]ά{fSM3uM`~_ tOi7@S__l 0zFTH՞x5Èvǐ82^6<[d)h7c85{Y1{4c* 'u;==x&ŤQ^O:RY a:ebaۏf(!]L6([ K<^S81(X+:b<<)Cn:b}V{}@Dd<B  S A? 2f)$ɢ,=Dn`!~f)$ɢ,=` @2Lx1KPm,X q*nuh Z|馋8#Wo.I4fHbƒ_)>Eև$I$V%S#eh+BEG2֐e/:S-CKkLM i3T~K~ˍ8lG v{X\fto奄o=~ߋN8\:JCMy?uf'Cz wg# ~-~< ^‘lddzmn`ܹoH\s7\?2BOD7n1ɺj?DdB  S A? 2{ !pwkn`!}{ !pwk `\KxRJ`m 87[(`D؂t>AGG!8P\ElLb‘ `  y .IfsV$J׵$42}*۱[l|1gSnw6eéag|֞ C0?(A`& _5 U;ByT:2}~QOz4;- )[V摪~^jGUxu׿OVG t`OZLqdU<ʰ'K;?wl݂rgQO/H?AnnDhF0c) WhDd B@B  S A? 2Ҍ!@9t3QdSn`!Ҍ!@9t3QdS*+1`PpT,xZ]lTUsv4`)jD(F-J $C)!р-nW(0kO}/l=99Ětϲ<2߈ ud8--}z>졣 C(LvoMubV,hΥ*)òcC >/3lSzQ#ؖ{#kUl hu6VvWІc6j6l)YҔ%Mٸ)7elДu2f9Z1tK{iD<󫔾g > l:Px?޹ވ:s" DХuo{dW a3CN45":ttp6g2l:ΤRt"Huuu%@yn,6gVJYOaV|Cf>; esDX "VTmB#LےyFF^V]7f FpSnBp: #/lFv;̬3h+&m|mFtSnBtÈn"D\7w*{.2IlKkۅ8Et3nMUvvꣻK&m|m[2ڼ=NU@$Ķd6 iD7&.D7lY辏۫mq2IlK*BO=BIyx,N[sgPIIī eQīLxwWL!~ub~jjѻE ^bFMJG-6Y}tg-&A|m"Xy{^}t t0I0 FVݣD$hkoB['g抣z{ 2G87$刯 tUѽޞt} NSDẃU9LaI>Kn OI$B"md_ī Irt@;-L}#^yRX!OUbOJ>뱵=:>>FX42: Ţ(όiQOm)K)7elД NSVy+0KH M|Hq yqw~덆{hw`,sk@Y3>~G,)%pw_YOHՊEb˖{_ݰڷeeSޞX&[BƢ]Rv KO>  91.jX485JLrk䌦YנH4̙Xoo6K5o~#zDQWRjUb*\k_1¤߁AWL~jb[f$LeW`_}}dr#T,EW  )+}=Z;1 "Y2U2jgxgs\L-fl3*Gb6] {rkti\Slś,bCQ<!bj_;7 ߭vO6B38o~3*a˔h}u̱߳6 ?(i*,Cy_S:#seU:~b[@9gDdL~}<  C A? 2lݒ(uc2BHK n`!@ݒ(uc2B08Dv#xZklU>ww}?"b `1[0j$i[hBwiXQ!-UL *IcRH-13;3:9{ιw̬T7,ȄR- - A#2y.> W%?&akJT^'۰^dE%-ü-V xZ=zh ]K" rje9[~vdۑ|Hӂblp; oP.Sݹ?F}Ժܫ._<կZ6fOHձLU}j1VL \fQ)_/ezؚMDGކzxHcfg9 Bg>| :]O3chddohh(7 e&ؓ{(,<8#jj͗Q%ɸj%,<YoA]˱ m%_Pw3΂g݋ msC>T3jC YfT*̫[)  !"#$%&'()*+,-./012345678:;<=>?@CFGHJIwxLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuv{|}~Root Entry F`AH'VYk'VEData 9WordDocumentpObjectPool iQ'VYk'V_1048074143F iQ'VZ'VOle CompObjfObjInfo "#$&'()*+,./012356789:;= FMicrosoft Equation 3.0 DS Equation Equation.39qtnIzI u io =s ij "k joj=1J "Equation Native _1061982678 FZ'VZ'VOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39qp`yII f min =c j "s jj=1J " FMicrosoft Excel WorksheetBiObjInfo Equation Native  _1061984799 FZ'VZ'VOle CompObjfObjInfoWorkbookKWSummaryInformation(ff8Excel.Sheet.89q Oh+'08@L\ tPBFJasenkaMicrosoft Excel@lzʉ ՜.+,D՜.+,8 PXd lt| PBFj A\pJasenka Ba= =<X@"1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1. Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman#,##0\ "kn";\-#,##0\ "kn"##,##0\ "kn";[Red]\-#,##0\ "kn"$#,##0.00\ "kn";\-#,##0.00\ "kn")$#,##0.00\ "kn";[Red]\-#,##0.00\ "kn">*9_-* #,##0\ "kn"_-;\-* #,##0\ "kn"_-;_-* "-"\ "kn"_-;_-@_->)9_-* #,##0\ _k_n_-;\-* #,##0\ _k_n_-;_-* "-"\ _k_n_-;_-@_-F,A_-* #,##0.00\ "kn"_-;\-* #,##0.00\ "kn"_-;_-* "-"??\ "kn"_-;_-@_-F+A_-* #,##0.00\ _k_n_-;\-* #,##0.00\ _k_n_-;_-* "-"??\ _k_n_-;_-@_-                + ) , *  `Chart5[$Figure19Figure21     3  @@  NO-dOT1-dNO-mOT1-mproteinsfets carbohydratesCaFevit B1vit B2 vit Cvit ANO-girlsTO-girlsNO-boysTO-boys - Qu b30bbb47Wide downward diagonal MM<4E4 3Q: TO-girlsQ ;Q ;Q3_ O   MM<4E4 3Q: NO-boysQ ;Q ;Q3_ O  7 fC ;7 i@za 1=<*I؜U( wwwwwwwwLight vertical MM<4E4 3Q: TO-boysQ ;Q ;Q3_ O   MM<4E4D$% M 3O&Q4$% M 3O&Q4FAH 3OzU/ 3 b#M! M43*#M&! M4%  M Z3O&P Q :% from RDA recommendation'4523 M NM43" YW3O% M3O&Q44444e Ca Ca Ca Ca Fe Fe Fe Fevit Avit Avit Avit Avit B1vit B1vit B1vit B1vit B2 vit B2 vit B2 vit B2 vit Cvit Cvit Cvit CěY@ Y@̌W@Q\@9l@pd@̜b@fffffY@^@`Y@fffff^@Y@33333d@b@f@fffff`@̬a@a@fffffe@33333b@d@33333f@R)d@33333Sd@e> 3333Sd A  dMbP?_*+%"0??4UT0bbK     @@f@@  @pd@@<@  3@`Y@u@Y@  @H@@#@  @@y@@  L@@@@xB00000 ((  (v ( <NMM?]`m  AMHP DeskJet 690C@n ,,@MSUD$HP DeskJet 690Cd" d,,??3`  W`  W `  ` W` W0,( = 0 ,f , c $,K  ]`o S@<T Ca Fe vitamin A vitamin B1 vitamin B2 vitamin C <@  7 8 <D E ?R Sal(\3Sdd23 M NM4 3Q: NO-girlsQ ;Q ;Q3_ O - fS K- i.@za|ka@O+8k( |>Wide downward diagonal MM<4E4 3Q: TO-girlsQ ;Q ;Q3_ O   MM<4E4 3Q: NO-boysQ ;Q ;Q3_ O , fO G, i*@za$E2fY_,I!)( >|Wide upward diagonal MM<4E4 3Q: TO-boysQ ;Q ;Q3_ O f  MM<4E4D$% M 3O& Q4$% M 3O& Q4FA-' 3Ou1B 3 b#M! M43*#M&! M4% 4 M Z3O&P Q :% from RDA recommendation'4523 M NM43" U3O>% M3O&Q44444e Ca Ca Ca Ca Fe Fe Fe Fevit Avit Avit Avit Avit B1vit B1vit B1vit B1vit B2 vit B2 vit B2 vit B2 vit Cvit Cvit Cvit CěY@ Y@̌W@Q\@9l@pd@̜b@fffffY@^@`Y@fffff^@Y@33333d@b@f@fffff`@̬a@a@fffffe@33333b@d@33333f@R)d@33333Sd@e >@Sd A  dMbP?_*+%MHP DeskJet 690C@n ,,@MSUD$HP DeskJet 690Cd" d,,??UT0bbb     .@.@.@,@ B@=@@@<@ H@L@J@M@ "<B00@(  v  <NMM?]`  AMHP DeskJet 690C@n ,,@MSUD$HP DeskJet 690Cd" d,,??3` .` .` .` .` .d` .P l(  pB  6D@jJ  ]``AxpB  6D@jJ ]`BxpB  6DjJ ??]`Bll  s *- @@v]-XC  <! recommendation< NxpB  6D@jJ@VV]`Dxx  6   @# | ]` Y <15%<``  S pJ]pY xx  6  @2 ]`TZ <30%<xx   6  @  ] `Z <55%<| 3d23 M NM4 3Q:  NO-dQ ;Q ;Q3_ O - fS K- i.@za|ka@O+8k( |>Wide downward diagonal MM< 4E4 3Q: OT1-dQ ;Q ;Q3_ O   MM< 4E4 3Q:  NO-mQ ;Q ;Q3_ O , fO G, i*@za$E2fY_,I!)( >|Wide upward diagonal MM< 4E4 3Q: OT1-mQ ;Q ;Q3_ O f  MM< 4E4D$% M 3O&Q4$% M 3O&Q4FAPs3 3OPs 3 b#M&43*#M! M4523 M NM43" qu_3Opp% M3O&Q443_ M NM  MM< 444% ^M?3O&Q 15'4% M?3O &Q 37'4% + M?3O&Q 48'4% M?3O&Q'4%  M?3O&Q 15'4% M?3O%&Q 29'4%  M?3OV&Q 56'4% M?3O&Q'4% M?3O&Q 15'4% M?3O&Q 33'4%  M?3O&Q 53'4% M?3O&Q'4% M?3O&Q 14'4% M?3O &Q 28'4%  M?3Og&Q 58'4% M?3O&Q'44eee >@ DocumentSummaryInformation8_1061984800 F2b'V2b'VOle PRINTz0 Figure1Figure2Chart5  WorksheetsCharts 6> _PID_GUIDAN{A73B6F21-F5CC-11D3-8BC7-00D00933E19F} FMicrosoft Excel ChartBiff8Excel.Sheet.89q08 h5    ''  Times New Roman-Times New Roman-Times New Roman---Times New Roman-Times New Roman-------------------------"System-'-  "-- k !! "---'---  "-  $__- _- U_U__P < "- ___- U- U___---'---  ---'--- k !!---'--- U. __---'--- U= OO "-  & "--  5B( F\F\ݻwwwwݻwwww- - !|-  -  - -&H- $||UU|- &--  5B( F\F\wwwwwwww- - !=v-  -  - -&H- $v==UvUv=- &--  5B( F\F\ݻwwwwݻwwww- - !-  -  - -&H- $UU- -$|,|,UU|$UU$*` *` UU*&--  5B( F\F\wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwqo $- - !|,-  -  - -&H- $,||U,U,|- &--  5B( F\F\wwwwwwwwwwwwwwwwwwwwwwww42- - !w-  -  - -&H- $wmwmUUw- &--  5B( F\F\wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww42- - !U` -  -  - -&H- $` U U U` U` U- - ${{UU$mUmUm$   U U ---'-- -  U. __---'-- -   "-  U_ U- -k_U_kUkUk- U- ---'-- -   ------'-- -  P  2 15""----'-- -   -----'-- -  ;  2 37""----'-- -   -----'-- -  ?  2 H48""----'-- -   -----'-- -  3  2 15""----'-- -   -----'-- -  UG  2 gP29""----'-- -   -----'-- -  uB   2 56""----'-- -   -----'-- -  _  2 h15""----'-- -   -----'-- -  ID  2 33""----'-- -   -----'-- -      2  53""----'-- -   -----'-- -  AQ  2 14""----'-- -   -----'-- -  ^  2 p28""----'-- -   -----'-- -  i /   2 8 58""----'-- -   ----'-- -    2 proteins&#& 2 fets2  carbohydrates#&#&#&#---'-- -   -- P <---'---  O =---'---  O = "-  &--  5B( F\F\ݻwwwwݻwwww- - !))]-  -  - -&H-  ]- 2 MNO-girls22"---'---  O =---'---  O = "-  - ;]2 MK OT1-girls2*#"---'---  O =---'---  O = "-  &--  5B( F\F\wwwwwwwwwwwwwwwwwwwwwwww- - !))]-  -  - -&H-  ]- 2 MNO-boys22#"!---'---  O =---'---  O = "-  -   ] 2 M OT1-boys2*##"!---'-- -  O =---'-- -   ---'-- -   "-  H-  k !!-  -  -4 &m~--  $nzzn $nz)z)n $MnMz}{}o $o{{o $o{%{%o $IoI{y{yo $o{{o $o{!|!p $EpE|u|up $p||p-- &&7j--  $>>nn $ $ $::jj $ $ $66ff $ $ $22bb-- &&< K--  $=II= $ = I<I<= $`=`II= $=II= $ = I8 I8 = $\ =\ I I = $ = I I = $ = I4 I4 = $X =X I I = $ = I I =-- &- -*jS- ---  - rd-- +2 ud recommendation"44"#""'  -- &L--  $SS $-- &- -w- ---  - n/Times New Roman- -   2 /15%..O'  -- - -c!!- ---  - -- - -~- ---  - i&- -   2 *30%..O'  -- - -A- ---  - 8- -   2 55%..O'  --  - '   '  'CompObjbObjInfo Workbook_SummaryInformation(! Oh+'0@HTd | PBFJasenkaMicrosoft Excel@s"@lzʉ ՜.+,D՜.+,8 PXd lt| PBFj IBa==Zk8X1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1. jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman1.jTimes New Roman#,##0\ "kn";\-#,##0\ "kn"##,##0\ "kn";[Red]\-#,##0\ "kn"$#,##0.00\ "kn";\-#,##0.00\ "kn")$#,##0.00\ "kn";[Red]\-#,##0.00\ "kn">*9_-* #,##0\ "kn"_-;\-* #,##0\ "kn"_-;_-* "-"\ "kn"_-;_-@_->)9_-* #,##0\ _k_n_-;\-* #,##0\ _k_n_-;_-* "-"\ _k_n_-;_-@_-F,A_-* #,##0.00\ "kn"_-;\-* #,##0.00\ "kn"_-;_-* "-"??\ "kn"_-;_-@_-F+A_-* #,##0.00\ _k_n_-;\-* #,##0.00\ _k_n_-;_-* "-"??\ _k_n_-;_-@_-                + ) , *  oChart3)Figure1?Figure2B: x    3  @@  NO-mproteinsfets carbohydratesCaFevit B1vit B2 vit Cvit ANO-wTO-wTO-mNO-girls OT1-girlsNO-boysOT1-boys 0 RJ $؁XWbb{@]b|p0b(Н0 tb0sT0  I  dMbP?_*+%MHP DeskJet 690C@n ,,@MSUD$HP DeskJet 690Cd" d,,??UT0bbbK NO-w TO-w NO-m TO-m Ca@@f@@ Fe @pd@@<@vit A3@`Y@u@Y@vit B1@H@@#@vit B2 @@y@@vit CL@@@@xN11456((  (v ( <NMM?]`  IMHP DeskJet 690C@n ,,@MSUD$HP DeskJet 690Cd" d,,??3`  W`  W `  ` W` W ,( = 0 ,f , c $0-,T  ]`0- S@<T Ca Fe vitamin A vitamin B1 vitamin B2 vitamin C <@  7 8 KD E OR Sal?3d23 M NM4 3Q:  NO-wQ ;Q ;Q3_ O   fU M i0@za%oOyy@( wwLight downward diagonal MM<4E4 3Q:  TO-wQ ;Q ;Q3_ O   MM<4E4 3Q:  NO-mQ ;Q ;Q3_ O   fC ; i@za 1=<*I؜U( wwwwwwwwLight vertical MM<43_ O   fC ; i@za 1=<*I؜U( wwwwwwwwLight vertical MM<4E4 3Q:  TO-mQ ;Q ;Q3_ O   MM<4E4D$% M 3O& Q4$% M 3O& Q4FA&3 3Os4G 3 b#M! M43*#M&! M4% +I M Z3O&P Q :% from RDA recommendation'4523 M NM43" !L3O !% M3O&Q44444eee ((>@ I  dMbP?_*+%MHP DeskJet 690C@n ,,@MSUD$HP DeskJet 690Cd" d,,??UT0bbbNO-girls OT1-girlsNO-boysOT1-boysproteins.@.@.@,@ fetsB@=@@@<@ carbohydratesH@L@J@M@ T<^730(  p  6NMM?<nx]`d  IM2EPSON EPL-5700 Advancedo53\ tVdo5V6wg7wX(G6gznW6@6*pgJOdg_7 4_7jw %" CpxDLLName16=EPGAG22E.DRVp77̉77p7dConfidential:G6&g8W7^6v7COMMCTRLDLLINDOWS\SYSTEM\EPGAG227'Ou7*LO*gJOdglO7*gvLOdg7G6*O*g܊JOdg7G6*܊Ċ`Њ*7777 ܊ڊЊ62" d,,??3` .` .` .` .` .d` .@ l(  pB  6D@jJ| ~ ]` xpB  6D@jJ ]`xpB  6DjJ ]`pll  s *@> @Ek]@> < recommendation<m NxpB  6D@jJE]`xx  6>  @"1 ]`>h <15%<``  S ?0]? xx  6X?  @1 ]`X? <30%<xx   6?  @  ] `?` <55%<0c3d23 M NM4 3Q: NO-girlsQ ;Q ;Q3_ O   fU M i0@za%oOyy@( wwLight downward diagonal MM< 4E4 3Q:  OT1-girlsQ ;Q ;Q3_ O   MM< 4E4 3Q: NO-boysQ ;Q ;Q3_ O   fC ; i@za 1=<*I؜U( wwwwwwwwLight vertical MM< 4E4 3Q: OT1-boysQ ;Q ;Q3_ O   MM< 4E4D$% M 3O&Q4$% M 3O&Q4FAVP 3OV. 3 b#M&43*#M! M4523 M NM43" `3O@ % M3O&Q443_ M NM  MM< 444% M3O&Q'4% . P M 3O&Q 48'4% * M 3O &Q 37'4%  M 3O&Q 15'4% M3O&Q'4%   M 3OV&Q 56'4% P M 3O%&Q 29'4% p M 3O&Q 15'4% M3O&Q'4%  P M 3O&Q 53'4%  M 3O&Q 33'4%  M 3O&Q 15'4% M3O&Q'4%  ` M 3Og&Q 58'4% p M 3O &Q 28'4%  M 3O&Q 14'44eee >@  DocumentSummaryInformation8%1Table,SummaryInformation(-DocumentSummaryInformation84 Figure1Figure2Chart3  WorksheetsCharts 6> _PID_GUIDAN{A73B6F21-F5CC-11D3-8BC7-00D00933E19F} Oh+'0x   ( 4 @ LX`hpPVlW|OTӯa(T֏]pp쨬B`(2g)(=S3 #"d(93Ī.H*`4`.ͼdAP8<7 }gۜ}sw-ƙWC g*W8 | *ǒE ,c(I*ǎpp?Mj`+*`,<㵭mWFE^XAT76Z7BU:?w5Vwʌ"`%{=.ײMmA_%Gm*ⰷF֩)q$kcӎAJ^Q둞K޻p^~C fm"Ԋ(" UWd"lO!ಃ*^.}ovQ r%sΗ% :Ľ%p!Bp6k8"CԜOH߿}p )Qs$} d8Ľ 8 y/E:^ 9? jgg}>C?;n }V|'$+_ ǒ]=s׵l lo Z3򷎩dE\'T'{}ǗTY^S+.7q~~똫o(M&0y-k?r\L=FRAq6ز5Rx L&GҢXwAb'e 5X* %s5%W jmcu*%)S34#z"jU숎v7B(ڈ~H-ЦfG[ƳMExLPiK\^~O6.D0F^i,N!Tih WȐ|eȭgH ^`H *^fHZv2$Gۏk ɷݎ G{?r3$ߍv7rG–cOG19p0~;ϐ ڃ]dH W!aaH.w{K͐Ɛ|9-dH~ K[*W!#0a=B튐}Y z>-%P(6J+bH~ [eH "ΐ^"!.fHN2$) ɟCr_3cӼ.qpEiQQ"WN]ά{fSM3uM`~_ tOi7@S__l 0zFTH՞x5Èvǐ82^6<[d)h7c85{Y1{4c* 'u;==x&ŤQ^O:RY a:ebaۏf(!]L6([ K<^S81(X+:b<<)Cn:b}V{}focus model template8ocuJasenkaaseGajdosJasenka2seMicrosoft Word 8.0e@F#@1n;@>V@>Vsz* ՜.+,D՜.+,P  px   Z*4j focus model template Title 6> _PID_GUIDAN{292B61A0-4C06-11D3-93D9-0060949704C3}  FMicrosoft Word Document MSWordDocWord.Document.89q* [,@,Normal OJQJmH HH Heading 1$<@&5CJKHOJQJBB Heading 2$<@&56OJQJ<< Heading 3$<@&OJQJ@@@ Heading 4$<@& 5OJQJ66 Heading 5 <@&CJBB Heading 6 <@&6CJOJQJ>> Heading 7 <@& CJOJQJBB Heading 8 <@&6CJOJQJD D Heading 9 <@&56CJOJQJ<A@<Default Paragraph FontNANFocus LIST bulleted & Fqe<B@< Body TextB*CJdOJQJhnH 8A8Focus HEADING 4$@&BrBFocus AFFILIATION rX6HO"H Focus AUTHORS r5;CJOJQJFBFFocus PARAGRAPH first$CJ^OB^Focus CAPTION picture$$77 6B*CJDObDFocus PARAGRAPH next $ LOrLFocus HEADING 1$$@&5CJHHFocus HEADING 2$@&;CJ:A:Focus KEYWORDS 6<mH FOFFocus REFERENCES$$ CJBBFocus TITLE sub1 5688 Focus TABLE$$B*CJLOL Focus TITLE$$*$ @&5;CJOJQJBBFocus TABLE last line$JRJBody Text Indent 2 $ B*hnH LALFocus EQUATION qq w>Q>Focus CAPTION table!$F1"FFocus HEADING 3"@&6CJOJQJ,@2,Header # !, @B,Footer $ !LqRLFocus TITLE volume%@&OJQJhnH LqbLFocus TITLE chapter&@&;CJhnH &)@q& Page Number4O4 Focus PICTURE($$((Style1)CJnH c5 3c5h0hDq23;<!%(/3h9  %96Y;<"$&')*,-.02~:<#+1c5::: #%(3DQ^m} %2A!!!! :P    o2$Nv2;Eϡ2$/ S<]3$2$+ɴu-f Wě"$)fmsғ]n 2$ݒ(uc2BH\h@  (  N  S A ?B S  ?H0(  c5 4 _1061800563 _1061984670 _1061984722 _1061984741 _1061984774[5[5d5@@@@@[5[5d5 no++++++++<,F,Y,],b,i,,,,-- - ---$-".*...5./ / //"/)/"0)0.030R0a011#1,11181S1\1112222#2&2'2:2<2B2C2H2I2N2222333333333344#4-404:4444444"535C5D5^5a5d5Tn.6" # O[(+!!"",,<,U,,,,,,-:---..R0b0c0l001#11111 22;2<2Z222s3t333333333344#4-404:4444444-5/5C5D5^5a5d5Jasenka=C:\JasenkaGajdos\Jasenka\racunalo1\radovi\gajdos-ispravak.docJasenka=C:\JasenkaGajdos\Jasenka\racunalo1\radovi\gajdos-ispravak.docJasenka=C:\JasenkaGajdos\Jasenka\racunalo1\radovi\gajdos-ispravak.docJasenka8C:\WINDOWS\TEMP\AutoRecovery save of gajdos-ispravak.asdJasenka=C:\JasenkaGajdos\Jasenka\racunalo1\radovi\gajdos-ispravak.docJasenka8C:\WINDOWS\TEMP\AutoRecovery save of gajdos-ispravak.asdJasenka8C:\WINDOWS\TEMP\AutoRecovery save of gajdos-ispravak.asdJasenka>C:\JasenkaGajdos\Jasenka\racunalo1\radovi\gajdos-ispravak1.docJasenkaLC:\JasenkaGajdos\Jasenka\racunalo1\radovi\gotovi radovi\gajdos-ispravak1.docJasenka,C:\JasenkaGajdos\Radovi\gajdos-biotehnol.doc|^ }x~D^ֈ/4^ C(&y5 f!IpN#"~4hx!nN2Ga ..88.. OJQJo( OJQJo( 88OJQJo( OJQJo(hh. hhOJQJo(*@7. hhOJQJo(@hhB*.hh.hh.|K~}|IpnNIpnNIpIp#"a~4K@ OJQJo(@EPSON EPL-5700 AdvancedLPT1:EPGAG22EEPSON EPL-5700 AdvancedEPSON EPL-5700 Advanced3\ tVdo5V6wg7w؈(G6gnW6@6*pgJOdg_7 4_7jw %" CpxDLLName16=EPGAG22E.DRVp77̉77p7dConfidential:G6&g8W7^6v7COMMCTRLDLLINDOWS\SYSTEM\EPGAG227'Ou7*LO*gJOdglO7*gvLOdg7G6*O*g܊JOdg7G6*܊Ċ`Њ*7777 ܊ڊЊ62EPSON EPL-5700 Advanced3\ tVdo5V6wg7w؈(G6gnW6@6*pgJOdg_7 4_7jw %" CpxDLLName16=EPGAG22E.DRVp77̉77p7dConfidential:G6&g8W7^6v7COMMCTRLDLLINDOWS\SYSTEM\EPGAG227'Ou7*LO*gJOdglO7*gvLOdg7G6*O*g܊JOdg7G6*܊Ċ`Њ*7777 ܊ڊЊ62`tL-.c5pp @pp<@p4pl@G:Times New Roman5Symbol3& :Arial_ CG Times CETimes New RomanSTimesTimes New Roman#1ZfZfbYfsz*Z,!0d*4*@Y4C:\JasenkaGajdos\Jasenka\racunalo1\radovi\Gajdos.dotfocus model templateJasenkaJasenkaCompObj<j