Pregled bibliografske jedinice broj: 956055
Experimental Evaluation of Point Cloud Classification using the PointNet Neural Network
Experimental Evaluation of Point Cloud Classification using the PointNet Neural Network // Proceedings of the 10th International Joint Conference on Computational Intelligence / Sabourin, Christophe ; Merelo, Juan Julian ; Barranco, Alejandro Linares ; Madani, Kurosh and Warwick, Kevin (ur.).
Sevilla: SCITEPRESS, 2018. str. 47-54 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 956055 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Experimental Evaluation of Point Cloud Classification using the PointNet Neural Network
Autori
Filipović, Marko ; Đurović, Petra ; Cupec, Robert
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 10th International Joint Conference on Computational Intelligence
/ Sabourin, Christophe ; Merelo, Juan Julian ; Barranco, Alejandro Linares ; Madani, Kurosh and Warwick, Kevin - Sevilla : SCITEPRESS, 2018, 47-54
ISBN
978-989-758-327-8
Skup
10th International Joint Conference on Computational Intelligence (IJCCI 2018)
Mjesto i datum
Sevilla, Španjolska, 18.09.2018. - 20.09.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Point Cloud, Point Set, Point Cloud Classification, PointNet, RGB-D, Depth Map
Sažetak
Recently, new approaches for deep learning on unorganized point clouds have been proposed. Previous approaches used multiview 2D convolutional neural networks, volumetric representations or spectral convolutional networks on meshes (graphs). On the other hand, deep learning on point sets hasn’t yet reached the “maturity” of deep learning on RGB images. To the best of our knowledge, most of the point cloud classification approaches in the literature were based either only on synthetic models, or on a limited set of views from depth sensors. In this experimental work, we use a recent PointNet deep neural network architecture to reach the same or better level of performance as specialized hand-designed descriptors on a difficult dataset of nonsynthetic depth images of small household objects. We train the model on synthetically generated views of 3D models of objects, and test it on real depth images.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-3155 - Napredna 3D percepcija za mobilne robotske manipulatore (ARP3D) (Cupec, Robert, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus