Pregled bibliografske jedinice broj: 95401
Use of artificial neural networks for retention modelling in ion chromatography
Use of artificial neural networks for retention modelling in ion chromatography // Croatica Chemica Acta, 75 (2002), 3; 713-725 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 95401 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Use of artificial neural networks for retention modelling in ion chromatography
Autori
Srečnik, Goran ; Debeljak, Željko ; Cerjan-Stefanović, Štefica ; Bolanča, Tomislav ; Nović, Milko ; Lazarić, Katica ; Gumhalter-Lulić, Željka
Izvornik
Croatica Chemica Acta (0011-1643) 75
(2002), 3;
713-725
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Ion chromatography; Retention modelling; Artificial neural networks; Anions; Optimization; Prediction; Separation; Eluents
Sažetak
The aim of this work was to develop an empirical model for retention of inorganic anions (fluoride, chloride, nitrite, sulphate, bromide, nitrate, and phosphate) in suppressed ion chromatography with hydroxide selective stationary phases using artificial neural networks. Three-layer feed-forward neural network trained with a Levenberg-Marquardt batch error back propagation algorithm has been used to model retention mechanisms of inorganic anions with. respect to the mobile phase parameters. The number of hidden layer nodes of the neural network and the number of iteration steps were optimized in order to obtain the best possible retention model. This study shows that an optimized artificial neural network is a very accurate and fast retention modelling tool to model various inherent linear and non-linear relationships of retention behaviour. This has been proven by developing the neural network retention model with average relative errors of 0.88% obtained using only 300 iteration steps. [References: 26]
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Kemijsko inženjerstvo, Temeljne medicinske znanosti
POVEZANOST RADA
Ustanove:
Farmaceutsko-biokemijski fakultet, Zagreb,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Profili:
Katica Lazarić
(autor)
Tomislav Bolanča
(autor)
Željko Debeljak
(autor)
Štefica Cerjan-Stefanović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- CA Search (Chemical Abstracts)