Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 95401

Use of artificial neural networks for retention modelling in ion chromatography


Srečnik, Goran; Debeljak, Željko; Cerjan-Stefanović, Štefica; Bolanča, Tomislav; Nović, Milko; Lazarić, Katica; Gumhalter-Lulić, Željka
Use of artificial neural networks for retention modelling in ion chromatography // Croatica Chemica Acta, 75 (2002), 3; 713-725 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 95401 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Use of artificial neural networks for retention modelling in ion chromatography

Autori
Srečnik, Goran ; Debeljak, Željko ; Cerjan-Stefanović, Štefica ; Bolanča, Tomislav ; Nović, Milko ; Lazarić, Katica ; Gumhalter-Lulić, Željka

Izvornik
Croatica Chemica Acta (0011-1643) 75 (2002), 3; 713-725

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Ion chromatography; Retention modelling; Artificial neural networks; Anions; Optimization; Prediction; Separation; Eluents

Sažetak
The aim of this work was to develop an empirical model for retention of inorganic anions (fluoride, chloride, nitrite, sulphate, bromide, nitrate, and phosphate) in suppressed ion chromatography with hydroxide selective stationary phases using artificial neural networks. Three-layer feed-forward neural network trained with a Levenberg-Marquardt batch error back propagation algorithm has been used to model retention mechanisms of inorganic anions with. respect to the mobile phase parameters. The number of hidden layer nodes of the neural network and the number of iteration steps were optimized in order to obtain the best possible retention model. This study shows that an optimized artificial neural network is a very accurate and fast retention modelling tool to model various inherent linear and non-linear relationships of retention behaviour. This has been proven by developing the neural network retention model with average relative errors of 0.88% obtained using only 300 iteration steps. [References: 26]

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Kemijsko inženjerstvo, Temeljne medicinske znanosti



POVEZANOST RADA


Projekti:
125016
0125055
0006541

Ustanove:
Farmaceutsko-biokemijski fakultet, Zagreb,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb


Citiraj ovu publikaciju:

Srečnik, Goran; Debeljak, Željko; Cerjan-Stefanović, Štefica; Bolanča, Tomislav; Nović, Milko; Lazarić, Katica; Gumhalter-Lulić, Željka
Use of artificial neural networks for retention modelling in ion chromatography // Croatica Chemica Acta, 75 (2002), 3; 713-725 (međunarodna recenzija, članak, znanstveni)
Srečnik, G., Debeljak, Ž., Cerjan-Stefanović, Š., Bolanča, T., Nović, M., Lazarić, K. & Gumhalter-Lulić, Ž. (2002) Use of artificial neural networks for retention modelling in ion chromatography. Croatica Chemica Acta, 75 (3), 713-725.
@article{article, author = {Sre\v{c}nik, Goran and Debeljak, \v{Z}eljko and Cerjan-Stefanovi\'{c}, \v{S}tefica and Bolan\v{c}a, Tomislav and Novi\'{c}, Milko and Lazari\'{c}, Katica and Gumhalter-Luli\'{c}, \v{Z}eljka}, year = {2002}, pages = {713-725}, keywords = {Ion chromatography, Retention modelling, Artificial neural networks, Anions, Optimization, Prediction, Separation, Eluents}, journal = {Croatica Chemica Acta}, volume = {75}, number = {3}, issn = {0011-1643}, title = {Use of artificial neural networks for retention modelling in ion chromatography}, keyword = {Ion chromatography, Retention modelling, Artificial neural networks, Anions, Optimization, Prediction, Separation, Eluents} }
@article{article, author = {Sre\v{c}nik, Goran and Debeljak, \v{Z}eljko and Cerjan-Stefanovi\'{c}, \v{S}tefica and Bolan\v{c}a, Tomislav and Novi\'{c}, Milko and Lazari\'{c}, Katica and Gumhalter-Luli\'{c}, \v{Z}eljka}, year = {2002}, pages = {713-725}, keywords = {Ion chromatography, Retention modelling, Artificial neural networks, Anions, Optimization, Prediction, Separation, Eluents}, journal = {Croatica Chemica Acta}, volume = {75}, number = {3}, issn = {0011-1643}, title = {Use of artificial neural networks for retention modelling in ion chromatography}, keyword = {Ion chromatography, Retention modelling, Artificial neural networks, Anions, Optimization, Prediction, Separation, Eluents} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • CA Search (Chemical Abstracts)





Contrast
Increase Font
Decrease Font
Dyslexic Font