Pregled bibliografske jedinice broj: 953937
Predviđanje bolesti iz metagenomskih podataka
Predviđanje bolesti iz metagenomskih podataka, 2018., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 953937 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predviđanje bolesti iz metagenomskih podataka
(Metagenomics-based disease prediction)
Autori
Široki, Tin
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
03.07
Godina
2018
Stranica
50
Mentor
Domazet-Lošo, Mirjana
Ključne riječi
metagenomika ; mikrobiota ; predviđanje bolest ; strojno učenje
(Metagenomics ; Microbiota ; Disease-prediction ; Machine learning)
Sažetak
The development of high-throughput sequencing technologies has enabled large-scale metagenomic analyses, i.e. direct analyses of all genomes in samples with no need for the cultivation of specific species. In this thesis, the problem of machine learning based disease prediction from metagenomic microbiome data is addressed. The thesis contains a survey of recent literature, and the evaluation of support vector machine, AdaBoost (boosting decision trees), random forest, and artificial neural network models on three different datasets containing control samples and samples affected with liver cirrhosis, colorectal cancer, and type two diabetes. The best F1 scores are: 0.89 on the liver cirrhosis dataset (AdaBoost), 0.81 on the colorectal cancer dataset (AdaBoost), and 0.76 on the type two diabetes dataset (SVM).
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mirjana Domazet Lošo
(mentor)