Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 953341

SEPSIS PREDICTION USING ARTIFICIAL INTELLIGENCE ALGORITHMS


Brnić, Mateo; Čondrić, Emanuel; Blažević, Sebastijan; Anđelić, Nikola; Borović, Emanuel; Car, Zlatan
SEPSIS PREDICTION USING ARTIFICIAL INTELLIGENCE ALGORITHMS // Internarional Conference on Inovative Technologies (IN-TECH 2018) / Car, Zlatan ; Kudláček, Jan (ur.).
Zagreb: Tehnički fakultet Sveučilišta u Rijeci, 2018. str. 47-50 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 953341 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
SEPSIS PREDICTION USING ARTIFICIAL INTELLIGENCE ALGORITHMS

Autori
Brnić, Mateo ; Čondrić, Emanuel ; Blažević, Sebastijan ; Anđelić, Nikola ; Borović, Emanuel ; Car, Zlatan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Skup
Internarional Conference on Inovative Technologies (IN-TECH 2018)

Mjesto i datum
Zagreb, Hrvatska, 05.09.2018. - 07.09.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
artificial neural networks, machine learning algorithms, sepsis, support vector machines

Sažetak
Sepsis is a serious, life-threatening condition. It is an extreme reaction of the body to an infection.When the body starts fighting that infection, it damages its own organs and tissue. Septic shock is the last stage of sepsis, and it leads to dangerously low blood pressure and sometimes even death. Patients with sepsis are usually treated in intensive care units (lCUs). In cooperation with the Clinical Hospital Center in Rijeka (Croatia), and its ICU, data was collected for use in different machine learning algorithms, so that predictions of sepsis occurrence in patients could be recognized by those algorithms. The data consists of 24 different parameters for each patient, where the 24th is a simple binary value representing sepsis occurrence for a patient. An artificial neural network (ANN) is being trained on this data, with 23 of the medical parameters used as inputs and binary sepsis occurrence as outputs. ANNs testing results show that connections between the input parameters and sepsis occurrence clearly exist, and with each new batch of data from the ICU, the accuracy of the neural network increases and therefore the predictions get better. Also, two other machine learning algorithms (classification methods) are used on the same data, so that results could be compared between the three. Support Vector Machine (SVM), based on the aforementioned data, builds a model that classifies patients to one of the two categories - patients with sepsis or patients without sepsis. Unlike SVM, K-Nearest Neighbors (KNN) method uses only part of the training data and accordingly classifies new patients.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Profili:

Avatar Url Sebastijan Blažević (autor)

Avatar Url Nikola Anđelić (autor)

Avatar Url Zlatan Car (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Brnić, Mateo; Čondrić, Emanuel; Blažević, Sebastijan; Anđelić, Nikola; Borović, Emanuel; Car, Zlatan
SEPSIS PREDICTION USING ARTIFICIAL INTELLIGENCE ALGORITHMS // Internarional Conference on Inovative Technologies (IN-TECH 2018) / Car, Zlatan ; Kudláček, Jan (ur.).
Zagreb: Tehnički fakultet Sveučilišta u Rijeci, 2018. str. 47-50 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Brnić, M., Čondrić, E., Blažević, S., Anđelić, N., Borović, E. & Car, Z. (2018) SEPSIS PREDICTION USING ARTIFICIAL INTELLIGENCE ALGORITHMS. U: Car, Z. & Kudláček, J. (ur.)Internarional Conference on Inovative Technologies (IN-TECH 2018).
@article{article, author = {Brni\'{c}, Mateo and \v{C}ondri\'{c}, Emanuel and Bla\v{z}evi\'{c}, Sebastijan and An\djeli\'{c}, Nikola and Borovi\'{c}, Emanuel and Car, Zlatan}, year = {2018}, pages = {47-50}, keywords = {artificial neural networks, machine learning algorithms, sepsis, support vector machines}, title = {SEPSIS PREDICTION USING ARTIFICIAL INTELLIGENCE ALGORITHMS}, keyword = {artificial neural networks, machine learning algorithms, sepsis, support vector machines}, publisher = {Tehni\v{c}ki fakultet Sveu\v{c}ili\v{s}ta u Rijeci}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Brni\'{c}, Mateo and \v{C}ondri\'{c}, Emanuel and Bla\v{z}evi\'{c}, Sebastijan and An\djeli\'{c}, Nikola and Borovi\'{c}, Emanuel and Car, Zlatan}, year = {2018}, pages = {47-50}, keywords = {artificial neural networks, machine learning algorithms, sepsis, support vector machines}, title = {SEPSIS PREDICTION USING ARTIFICIAL INTELLIGENCE ALGORITHMS}, keyword = {artificial neural networks, machine learning algorithms, sepsis, support vector machines}, publisher = {Tehni\v{c}ki fakultet Sveu\v{c}ili\v{s}ta u Rijeci}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font