
Antibacterial assesment of aroylhydrazone derivatives in vitro

<u>Ana Budimir</u>¹, Saša Polović², Vanja Ljoljić-Bilić¹, Darko Kontrec³, Ivan Kosalec¹, Nives Galić⁴

¹Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia. ²Agency for Medicinal Products and Medical Devices, Zagreb, Croatia. ³Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia. ⁴Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia

Abstract

Aroylhydrazones have attracted considerable attention for their wide range of biological activities, such as antibacterial, antifungal, antitumor and anti-inflammatory properties.^{1,2,3} Additionally, hydrazones as chelating agents were investigated as potential drugs for treatment of iron-overload associated diseases.⁴ In the present work, a group of 13 derivatives was studied for antibacterial activity, as a part of our investigations on aroylhydrazones.

The *Staphylococcus aureus* ATCC 6538 and *E. coli* ATCC 10536 was used as a model strains. Modified serial and twofold microdilution method according to the EUCAST 5.1 recommendations was used to determine OD₅₄₀ after incubation. MIC (as IC₉₀) and IC₅₀ was calculated as %viability/log_{conc} ratio by non-linear regression and Gompertz equitation using GraphPad Prism 7.0. The tests were performed in triplicated and MIC (IC₉₀) and IC₅₀ presented as mean. Compounds **11** and **12** showed antibacterial activity against *S. aureus* and *E. coli* strains with MICs between 33.02 and 104.9 µg/mL while **6** and **8** showed activity only against *S. aureus* with MICs range from 129.7 to 270.3 µg/mL. Compounds **2** and **10** were active only against *E. coli* with MIC values 55.58 and 50.47 µg/mL, respectively. IC₅₀ values reveals that compounds **6**, **8** and **11** exhibited strong bactericidal activity against *S. aureus* strain represented as IC₅₀.

References:

[1] S. Neha, R. Ritu, K. Manju, K. Birendra, IJPCR 8 (2016) 162–166.

[2] G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. Rahmat, M.M. Alam, JPBS 6 (2014) 69-80.

[3] L.N. Suvarapu, Y.K. Seo, S.O. Baek, V.R. Ammireddy, E-J. Chem. 9 (2012) 1288–1304.

[4] K. Hruskova, P. Kovarikova, P. Bendova, P. Haskova, E. Mackova, J. Stariat, A. Vavrova, K. Vavrova, T. Simunek, *Chem. Res. Toxicol.* 24 (2011) 290–302

This work was fully supported by Croatian Science Foundation (project IP-2014-09- 4841).

301