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Abstract—We study investor behavior in the Bitcoin/USD
market based on a continuous-time stochastic model for the
order book dynamics. The simplicity of the model allows for
straightforward parameter estimation from the data and a
comparison with developed exchanges such as stock markets. The
analysis is performed on the order book data stream captured
over a continuous period of 300 hours. Our results suggest that
the model is a good match for the considered cryptocurrency
exchange. We report a large number of front runners in the
market, which may artificially inflate both incoming and outgoing
order intensities. In addition, we find that symmetrizing bid and
ask intensities improves the model accuracy. Based on the model
we are able to calculate probabilities of an upward mid-price
movement, and shed new light on the market microstructure in
cryptocurrency exchanges.

I. INTRODUCTION

Since its inception, Bitcoin has brought the blockchain
technology into the spotlight of many academic and industrial
endeavours, forming the world of cryptocurrencies. By trans-
forming the financial engineering process of securitization into
the decentralized mechanism of fokenization, cryptocurrencies
introduced a novel asset class available to investors worldwide
[1]. Over the course of this transformation, the exchange mech-
anisms have evolved — from enthusiasts meeting in person and
using over-the-counter markets, to organized double-auction
markets, implemented as online cryptocurrency exchanges
featuring simple administration and low transaction fees [2].
Due to their pervasiveness and a generally highly permissive
nature, cryptocurrency exchanges quickly became a popular
destination for many traders and investors, achieving rampant
growth in volume over the past years.

However, while exchanges in developed markets feature
liquidity mechanisms and safety procedures (e.g. volatility
interrupts) based on the known behavior of investors, this
sort of governance is still lacking in most cryptocurrency
exchanges. A critical point in this process is understanding
the investor dynamics in the double-auction system, which in
cryptocurrency markets is yet to be analyzed [3]. Understand-
ing market microstructure and investor behaviour is a key step
towards safer and improved implementations of cryptocurrency
exchanges, especially when considering the risks of extreme
price fluctuations [4], [5], and the security of cryptocurrency
exchanges themselves [6].

Up until recently the infinite depth order book data in
financial markets was generally hard to obtain. With the
arrival of cryptocurrency exchanges with open APIs it became
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Fig. 1. A snapshot of the limit order book. The limit buy orders (bid) are

represented with negative, while the limit sell orders (ask) are represented
with positive values.

possible to capture all the incoming orders and reconstruct
the complete order book, inciting new insight on the investor
behavor and liquidity dynamics in cryptocurrency markets [7].
In addition, this development allowed anyone with a computer
and some savings to act as a market maker on these exchanges.
As the structure of traders shifted, an open and interesting
question is whether the well established models for order
book dynamics still provide a satisfactory description of the
observed dynamics [8].

In this paper we employ a continous-time order book model
of Cont et al. [9] to analyze the market microstructure in a
Bitcoin/USD market. The model views each price level in the
order book as a queue at which orders arrive and leave at
certain rates, estimated as model parameters [10]. Our dataset
consists of data captured from Bitstamp’s [11] order book
data stream in a continuous period of 300 hours from 2018-
01-24 06:00:00 UTC until 2018-02-05 18:00:00 UTC. Due
to the simplicity of the model, parameter estimation is quite
straightforward, allowing us to perform an empirical analysis
of the order book dynamics and estimate probabilities of an
upward mid-price move [12].

II. LIMIT ORDER BOOK MODEL

Let us recall the model presented in [9]. At any given time
t > 0 the state of the order book is represented by a vector of



integer entries (X (¢), X2(t), ..., X,(t)) where {1,2,...,n}
is a fixed price grid and each positive X;(t) > 0 represents
the number of limit sell orders at the price level ¢ and for each
negative X;(t) < 0, |X;(t)| represents the number of limit
buy orders at price level j.

Not all integer vectors represent a valid state of the order
book. The ask price at time ¢ is defined as the lowest price
level for which there is a limit sell order

pa(t) =inf{1,2,...,n|X;(t) > 0}, (1)

and similarly the bid price at time ¢ is the highest price level
for which there is a buy limit order

pp(t) =sup{l,2,...,n|X;(t) < 0}. 2)

Clearly, the only valid representations are those for which
pp(t) < pa(t). Figure 1 represents one valid state vector.
Note that the price level ¢ in that figure corresponds to the
price ¢ - 10USD as the tick size we used was 10USD.

The set of all admissible vectors forms a state space
for a continuous Markov process that provides the dynamics
in this model. Given that the process is in the state z; =
(X1(t), Xa(t),...,X,(t)), it is only allowed to transition with
non-zero intensity to the states xy for which xy = x; + ¢,
where ¢; = (0,...,1,...,0) is 4" vector of the canonical
basis.

To put it precisely, let A(¢) > 0, 1 < i < n be the intensities
of arrivals of limit orders at the price level ¢ ticks away from
the opposite best, 6(i) > 0,1 < ¢ < n the intensities of
cancellations of limit orders at the price level ¢ ticks away from
the opposite best, and > 0 the intensity of market orders.
These parameters are assumed to be fixed in the observed
period and they completely determine the dynamics as follows.

Given that the process at time ¢ is in the state z, denoted
by pp, pa the best bid and ask respectively, then the transition
rates to the state ' = = + e; are:

| Xi|0(pa — 1), i <pp <pa
Qr—a’ = U+ |XPB|9(pA _pB)7 1= DB (3)
(i —pB), pp <1
to the state '’ = x — ¢;:
)‘(Z _pA)7 Z<pA
Qoo = § P+ | Xpa|0(pa —pB), i=Dpa 4
| X:|0(i — pB), pB <pa <1

and O to all the other states.

Note that this model assumes independent and exponen-
tially distributed waiting times between orders.

III. PARAMETER ESTIMATION

As we mentioned before, our dataset comes from capturing
a live stream of orders provided by Bitstamp exchange [11].
From this data we could reconstruct a good portion of the
limit order book at any point in time. The next step was to
aggregate the data using a tick size of 10USD. The bid prices
were rounded down, while the ask prices were rounded up.
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Fig. 2. Approximation of the steady state shape of the book. The model

we use is known to be ergodic and it is therefore meaningful to take time
averages of snapshots of the order book to obtain the steady state shape of
the book.

The intensities A(7) were then estimated to be

L Ni(i)
i) = 5
(i) = 57 (5)
where N;(i) was the number of limit buy or sell orders that
arrived at the distance ¢ ticks from the opposite best, and T’
the length of the observed period in seconds.

Similarly 6(i) was estimated as

N (i)

0(t) = ——=, 6
where N, (i) was the number of cancellation buy or sell orders
that arrived in the observed period and (i) the average
number of orders at the distance ¢ from the best bid/ask. In
Figure 2 this value is plotted in green.

Finally i was estimated as
Ny (i) S
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where N,,(i) was the number of market buy or sell orders
that arrived in the observed period, .S,, was the average size
of market orders, and \S; the average size of orders at the best
price levels. This correction is needed as market orders are on
average smaller in size than limit orders.

In fact we were able to obtain a slightly better results when,
instead of using one unique parameter p, we used different
normalisations for buy and sell market orders. To be precise,

we used 5
Ny, (i) S
B m m
= 8
as market buy intensity where SZ was the average size of
market buy orders and S“(1) the average size of sell orders

at the best ask. Similarly
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Fig. 3. The average size of buy (Bid S (7)) and sell (Ask S (4)) orders

at the given distance from the opposite best order.
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Fig. 4. Estimated model parameters: market buy (sell) order up (1a),
symmetrized limit A(¢) and cancellation 6(z) intensities.

was estimated market sell intensity where SZ was the average
size of market buy orders and SZ(1) the average size of buy
orders at the best bid. In Figure 3 we see graphs of both S¥
and S4. All the estimated parameters are shown in Figure 4.

IV. PROBABILITY OF AN UPWARD PRICE MOVE

Once the parameters have been successfully estimated, the
model can be used to produce predictions which can then be
put to test.

One of the predictions that the authors in [9] are able
to compute is the expression for the probability of the next
upward price move. A particularly simple case is that of spread
being smaller than tick size.

Recall that the spread at time ¢ in this model is pa(t) —
pp(t) ticks and the mid-price level is given as

() = pat) +p5(t)

5 (10)

Pm
If pa — pp = 1 then the only way that the mid-price can

change is either if the number of orders at the best bid | X, |

TABLE 1. PREDICTED FREQUENCIES OF THE UPWARD MID-PRICE

MOVE
a
b 1 2 3 4 5
1| 0533 | 0385 | 0317 | 0.284 | 0.261
2 0.694 0.547 0.483 0.441 0.409
3 0.773 0.634 0.562 0.530 0.501
4 0.819 0.698 0.621 0.577 0.558
5 0.851 0.746 0.672 0.621 0.591
TABLE II. OBSERVED FREQUENCIES OF THE UPWARD MID-PRICE
MOVE
a
1 2 3 4 5

0.521 0.310 | 0.249 | 0.207 | 0.184
0.741 0.534 | 0450 | 0.428 | 0.403
0.816 | 0.631 | 0.522 | 0.477 | 0.495
0.848 | 0.671 | 0.592 | 0.564 | 0.606
0.867 | 0.716 | 0.639 | 0.615 | 0.609
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go to 0, or if the number of orders at the best ask | X, ,| go to
0. Indeed, in former case the mid-price will move downwards
and in the latter upwards. Thus, the probability of the upward
move is equal to the probability that the queue of orders at the
price level p4 reaches zero before the queue of orders at the
level price pp.

It is then known from the queuing theory that the required
probability can be computed using incoming and outgoing
order intensities of those two queues. The precise expression
for this probability is given in [9, Proposition 3].

V. RESULTS

We used the estimated parameters to compute the probabil-
ities that the mid-price moves upwards given that the spread is
of size less than one tick and that the number of orders at the
best bid and ask are 1 < a < 5 and 1 < b < 1 respectively.
The results are given in Table L.

But from the data we can in each instance, for which
the spread was under the tick size, top ask consisted of a
orders, and top bid of b orders, calculate whether the mid-price
actually went up or down. Taking then the relative frequency
of the positive outcomes should, if the model is right, match
the predicted probabilities.

The observed frequencies are given in Table II below and
we can see that they match those in Table I quite nicely. In
fact the matrix distance between the two is around 0.199. This
accuracy is comparable to 0.48 that was obtained in [9] for
conventional exchanges.

VI. CONCLUSION

We tested alignment of the limit order book model de-
veloped in [9] with the data coming from one of the biggest
Bitcoin exchanges and found a good match with the model
when it comes to computing probabilities of the upward mid-
price movement.

It was proven in [9] that this model is an ergodic Markov
process and therefore it is meaningful to take time averages
and compute steady state distributions. This also means that as



we increase the amount of observed data, one expects to see
more accurate matching with the model and this effect could
explain the better accuracy we see when compared with that
in the original paper.

There is plenty of space for improvements however. For
example, we tried separating buy and sell orders and then
estimating arrival and cancellation rates separately for each,
but the results were not as good as when they were taken
together. This could be due to the effect that symmetrizing the
intensities by taking them together pushes all the probabilities
towards % which leads to a better model or it could be that by
halving the amount of data we use to estimate each parameter
we inevitably lose on accuracy, or both.

Another problem when analysing these markets is a large
number of front runners, traders who most of the time submit
just a tiny bit better offer in front of the best order to make
sure their order is executed first. This artificially inflates both
incoming and outgoing intensities and results that they almost
match. A good way to exclude this effect could potentially lead
to a more accurate parameter estimation and a better model.
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