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Abstract
In this paper, we give a combinatorial parametrization of leading terms of defining rela-
tions for the vacuum level k standard modules for the affine Lie algebra of type C (1)

n .
Using this parametrization, we conjecture colored Rogers–Ramanujan type combina-
torial identities for n ≥ 2 and k ≥ 2; the identity in the case n = k = 1 is equivalent
to one of Capparelli’s identities.
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1 Introduction

The famous Rogers–Ramanujan identities are two analytic identities, for a = 0 or 1,

∏

m≥0

1

(1 − q5m+1+a)(1 − q5m+4−a)
=

∑

m≥0

qm
2+am

(1 − q)(1 − q2) · · · (1 − qm)
. (1)
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If, for a = 0, we expand both sides in Taylor series, then the coefficient of qm obtained
from the product side can be interpreted as a number of partitions of m with parts
congruent ±1 mod 5. On the other side, the coefficient of qm obtained from the sum
side can be interpreted as a number of partitions of m such that a difference between
two consecutive parts is at least two. We can write a partition as

∑

j≥1

j f j or 1 f12 f23 f3 . . . ,

meaning that the part j appears f j times in the partition, and f j = 0 for all but finitely
many j . With this notation, the difference two condition between two consecutive
parts can be written as

f j + f j+1 ≤ 1, j ≥ 1, (2)

and two ways of expressing the coefficient of qm in Taylor series of (1) can be stated
as combinatorial Rogers–Ramanujan identity

#
{
m =

∑
j f j | j ≡ ±1(mod 5)

}
= #

{
m =

∑
j f j | f j + f j+1 ≤ 1

}
.

The analytic Rogers–Ramanujan identities have Gordon–Andrews–Bressoud’s gener-
alization (cf. [3,4,12,13,28]). These identities also have a combinatorial interpretation,
but in general it is not so easy to interpret the sum sides of analytic identities as gen-
erating functions for a number of partitions satisfying certain difference conditions
among parts.

In 1980s Rogers–Ramanujan type identities appeared in statistical physics and in
representation theory of affine Kac–Moody Lie algebras. This led to two lines of
intensive research and numerous generalizations of both analytic and combinatorial
identities; the reader may consult, for example, the papers [6,8,9,14,17,19–22,26,27,
29,52] and the references therein.

Lepowsky andMilne discovered in [32] that the product sides ofGordon–Andrews–
Bressoud identities, multiplied with certain fudge factor F , are principally specialized
characters of standard modules for the affine Lie algebra ŝl2. Lepowsky and R. L.
Wilson realized that the factor F is a character of the Fock space for the principal
Heisenberg subalgebra of ŝl2, and that the sum sides of Gordon–Andrews–Bressoud
identities are the principally specialized characters of the vacuum spaces of stan-
dard modules for the action of principal Heisenberg subalgebra. In a series of papers
(see [34,35] and the references therein), Lepowsky and Wilson discovered vertex
operators in the principal picture on standard ŝl2-modules and constructed bases of
vacuum spaces for the principal Heisenberg subalgebra parametrized by partitions
satisfying certain difference 2 conditions. Very roughly speaking, in the Rogers–
Ramanujan case, the vacuum space Ω is spanned by monomial vectors of the
form

Z(−s) fs . . . Z(−2) f2 Z(−1) f1v0, s ≥ 0, f j ≥ 0, (3)
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where v0 ∈ Ω is a highest weight vector and Z( j) are certainZ-operators. The degree
of monomial vector (3) is

−m = −
s∑

j=1

j f j .

Since Z-operators Z( j) on Ω satisfy certain relations, roughly of the form

Z(− j)Z(− j) + 2
∑

i>0

Z(− j − i)Z(− j + i) ≈ 0,

Z(− j − 1)Z(− j) +
∑

i>0

Z( j − 1 − i)Z(− j + i) ≈ 0
(4)

(see [34,35] and [38] for the precise formulation), we may replace the leading
terms

Z(− j)Z(− j) and Z(− j − 1)Z(− j) (5)

of relations (4) with “higher terms” Z(− j − i)Z(− j + i) and Z(− j − 1 −
i)Z(− j + i), i > 0, and reduce the spanning set (3) of Ω to a spanning
set

Z(−s) fs . . . Z(−2) f2 Z(−1) f1v0, s ≥ 0, f j + f j+1 ≤ 1 for all j ≥ 1. (6)

By invoking the product formula for principally specialized character of Ω and the
Rogers–Ramanujan identities, we see that vectors in the spanning set (6) are in fact a
basis of Ω . In such a way Gordon–Andrews–Bressoud identities also appear for low-
level representations of different affine Lie algebras or for representations of low-rank
affine Lie algebras (see [10,37,42–45,53]), and S. Capparelli has found new combina-
torial identities (see [5,15] and [46]). The analogous construction in the homogeneous
picture is obtained in [33].

The results of this paper are closely related to a similar construction of combinatorial
bases for the standard ŝl2-modules obtained in [39] and [40] by A. Meurman and the
first author, and independently in [18] by B. Feigin, R. Kedem, S. Loktev, T. Miwa,
and E. Mukhin. The starting point is a basis of ŝl2

c and x( j), h( j), y( j), j ∈ Z, (7)

where {x, h, y} is the standard basis of sl2, and the corresponding Poincaré–Birkhoff–
Witt monomial spanning set of level k standard ŝl2-module L(kΛ0)

y(−s)cs . . . y(−2)c2h(−2)b2x(−2)a2 y(−1)c1h(−1)b1x(−1)a1v0, s ≥ 0, (8)

with a j , b j , c j ≥ 0. The spanning set (8) is analogous to the spanning set (3). We have
a relation ∑

j1+···+ jk+1=m

x( j1) · · · x( jk+1) = 0 (9)
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with the leading term
x(− j − 1)bx(− j)a (10)

with a+b = k+1 and (− j −1)b+ (− j)a = m. This is analogous to (4) and (5), and
we can reduce the spanning set (8) to a smaller spanning set satisfying the difference
condition

a j+1 + a j ≤ k,

but this spanning set is not a basis of L(kΛ0). All the relations needed to reduce (8)
to a basis of L(kΛ0) are obtained from (9) by the adjoint action of sl2, and all the
leading terms are obtained by the adjoint action of sl2 on (10)

x(− j − 1)bh(− j)a2x(− j)a1 , a1 + a2 = a,

x(− j − 1)b y(− j)a2h(− j)a1, a1 + a2 = a,

h(− j − 1)b1x(− j − 1)b2 y(− j)a, b1 + b2 = b,

y(− j − 1)b1h(− j − 1)b2 y(− j)a, b1 + b2 = b

(11)

(see (33)). By using these relations and their leading terms, we can reduce a spanning
set (8) to a smaller spanning set of L(kΛ0) satisfying the difference conditions

a j+1 + b j + a j ≤ k,

a j+1 + c j + b j ≤ k,

b j+1 + a j+1 + c j ≤ k,

c j+1 + b j+1 + c j ≤ k.

(12)

In [18] and [40] it is proved, by different methods, that this spanning set is a basis of
L(kΛ0). This is analogous to the difference conditions for the basis (6). The degree
of monomial vector (8) satisfying the difference conditions (12) is

−m = −
∑

j≥1

ja j −
∑

j≥1

jb j −
∑

j≥1

jc j ,

so we are naturally led to interpret monomial basis vectors (8) in terms of colored
partitions with parts j in three colors: x , h, and y (cf. [1,2,29]).

In this paper, we give a combinatorial description of (some) leading terms of rela-
tions for the level k ≥ 1 standard modules L(kΛ0) of the affine Lie algebras C

(1)
n for

all n ≥ 2. For the set of indices {1, 2, · · · , n, n, · · · , 2, 1}, we parametrize a basis of
the Lie algebra of type Cn as

B =
{
Xab | b ∈ {1, 2, · · · , n, n, · · · , 2, 1}, a ∈ {1, · · · , b}

}
.
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We visualize B as a triangle, for n = 3 we have

11
12 22
13 23 33
13 23 33 33
12 22 32 32 22
11 21 31 31 21 11.

For any point rr on the diagonal, we observe two triangles with this point in common.
For example, for r = 3, we have the triangles

11
12 22
13 23 33
13 23 33 33

32 22
31 21 11.

In each of these triangles, we observe a cascade, i.e., a “staircase” going downwards
from the right to the left with a given multiplicity at each point. For example, we have
two cascades, B and A,

·
· ·
· 3 2
5 0 · ·

· 1
1 2 ·

in the triangles with the common point 33. For two such cascades and some j ∈ Z,
we can write the leading term of a relation — in our example it is the monomial

X33(− j − 1)2X23(− j − 1)3X23(− j − 1)0X13(− j − 1)5 X22(− j)1X21(− j)2X31(− j)1.

This monomial is the leading term of some relation for

k + 1 = (2 + 3 + 0 + 5) + (1 + 2 + 1),

i.e., for the standardmodule L(13Λ0). By using these relations and their leading terms,
we can reduce the PBW spanning set

∏

ab∈B, j>0

Xab(− j)mab; j v0

of L(kΛ0) to a smaller spanning set satisfying difference conditions
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∑

ab∈B
mab; j+1 +

∑

ab∈A
mab; j ≤ k (13)

for any two cascades as above. We conjecture that this spanning set is in fact a
basis.

If we interpret sl2 as type C1 Lie algebra, then our list of leading terms coincides
with (11), and our difference conditions (13) coincide with difference conditions (12),
so by [18] and [40] the spanning set is a basis. For level k = 1 and C (1)

2 the spanning
set is a basis by [50], and we show in [49] that the spanning set is a basis for k = 1
and all n ≥ 2. These are the only cases in which our conjecture is proved. Numerical
evidence supports our conjecture in the case n = k = 2 (see Example 3 in the last
section).

It took us quite a while to understand the combinatorial parametrization of leading
terms even for the B(1)

2 = C (1)
2 type affine Lie algebra, especially in level one case

I. Siladić enumerated leading terms by using a computer. G. Trupčević in [51] first
encountered the “combinatorics of cascades” in his construction of combinatorial
bases of the Feigin–Stoyanovsky’s type subspaces of standard modules for the affine
Lie algebras ŝln , a very special case of which are the “admissible configurations” in
[17] and [47]. In [7], combinatorial bases of the Feigin–Stoyanovsky’s type subspaces
of all standard modules for the affine Lie algebras of typeC (1)

� were constructed. Since
the combinatorial parametrization of the leading terms in [7] formally coincides with
the one described above for n = 2�, we feel that this formal similarity might also
support our conjecture (cf. [48]). In the last section, we formulate conjectured colored
Rogers–Ramanujan type combinatorial identities.

2 Vertex algebras for affine Lie algebras

Let g be a simple complexLie algebra, h aCartan subalgebra of g, and 〈 , 〉 a symmetric
invariant bilinear form on g. Via this form we identify h and h∗ and we assume that
〈θ, θ〉 = 2 for the maximal root θ (with respect to some fixed basis of the root system).
We fix a root vector xθ in g. Set

ĝ =
∐

j∈Z
g ⊗ t j + Cc, g̃ = ĝ + Cd.

Then g̃ is the associated untwisted affine Kac–Moody Lie algebra (cf. [30]) with the
commutator

[x(i), y( j)] = [x, y](i + j) + iδi+ j,0〈x, y〉c.

Here, as usual, x(i) = x ⊗ t i for x ∈ g and i ∈ Z, c is the canonical central element,
and [d, x(i)] = i x(i). We identify g and g ⊗ 1. Set

g̃<0 =
∐

j<0

g ⊗ t j , g̃≤0 =
∐

j≤0

g ⊗ t j + Cd, g̃≥0 =
∐

j≥0

g ⊗ t j + Cd.
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For k ∈ C denote by Cvk the one-dimensional (g̃≥0 + Cc)-module on which g̃≥0
acts trivially and c as the multiplication by k. The affine Lie algebra g̃ gives rise to the
vertex operator algebra (see [24] and [23], here we use the notation from [40])

N (kΛ0) = U (g̃) ⊗U (g̃≥0+Cc) Cvk

for level k �= −g∨, where g∨ is the dual Coxeter number of g; it is generated by the
fields

x(z) =
∑

m∈Z
xmz

−m−1, x ∈ g, (14)

wherewe set xm = x(m) for x ∈ g. As usual, for v ∈ N (kΛ0)wedenote the associated
vertex operator by Y (v, z) = ∑

m∈Z vmz−m−1, and the vacuum vector by 1. By the
state-field correspondence, we have

x(z) = Y (x(−1)1, z) for x ∈ g.

The Z-grading is given by L0 = −d. From now on, we fix the level k ∈ Z>0.

3 Annihilating fields of standardmodules

For the fixed positive integer level k, the generalized Verma g̃-module N (kΛ0) is
reducible, and we denote by N 1(kΛ0) its maximal g̃-submodule. By [30, Corollary
10.4] the submodule N 1(kΛ0) is generated by the singular vector xθ (−1)k+11. Set

R = U (g)xθ (−1)k+11, R̄ = C-span{rm | r ∈ R,m ∈ Z}.

Then R ⊂ N 1(kΛ0) is an irreducible g-module, and R̄ is the corresponding loop
g̃-module for the adjoint action. We have the following theorem (see [16,25,36,40]):

Theorem 1 Let M be a highest weight g̃-module of level k. The following are equiva-
lent:

1. M is a standard module,
2. R̄ annihilates M.

This theorem implies that for a dominant integral weight Λ of level Λ(c) = k we
have

R̄M(Λ) = M1(Λ),

where M1(Λ) denotes the maximal submodule of the Verma g̃-module M(Λ). Fur-
thermore, since R generates the vertex algebra ideal N 1(kΛ0) ⊂ N (kΛ0), the vertex
operators Y (v, z), v ∈ N 1(kΛ0), annihilate all standard g̃-modules

L(Λ) = M(Λ)/M1(Λ)
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of level k. We shall call the elements rm ∈ R̄ relations (for standard modules), and
Y (v, z), v ∈ N 1(kΛ0), annihilating fields (of standard modules). The field

Y (xθ (−1)k+11, z) = xθ (z)
k+1

generates all annihilating fields. We also write

Y (xθ (−1)k+11, z) =
∑

m∈Z
r(k+1)θ (m)z−m−k−1.

4 Leading terms

Set ḡ = ĝ/Cc. The associative algebra U = U (ĝ)/(c − k) inherits from U (ĝ) the
filtration U�, � ∈ Z≥0; let us denote by S ∼= S(ḡ) the corresponding commutative
graded algebra. Let B be a basis of g. We fix the basis B̄ of ḡ,

B̄ =
⋃

j∈Z
B ⊗ t j .

Let � be a linear order on B̄ such that

i < j implies x(i) ≺ y( j).

The symmetric algebra S has a basis P consisting of monomials in basis elements B̄.
Elements Π ∈ P are finite products of the form

Π =
�∏

i=1

Xi ( ji ), Xi ( ji ) ∈ B̄,

and we shall say thatΠ is a colored partition of degree |Π | = ∑�
i=1 ji ∈ Z and length

� (Π) = �, with parts Xi ( ji ) of degree ji and color Xi . We shall usually assume that
parts of Π are indexed so that

X1( j1) � X2( j2) � · · · � X�( j�). (15)

We associate with a colored partition Π its shape shΠ , the “plain” partition

j1 ≤ j2 ≤ · · · ≤ j�.

We call the basis element 1 ∈ P the colored partition of degree 0 and length 0. Note
that P ⊂ S is a monoid with the unit element 1, the product of monomials Φ and
Ψ is denoted by ΦΨ . For colored partitions Φ, Ψ , and Π = ΦΨ , we shall write
Φ = Π/Ψ and Ψ ⊂ Π . We shall say that Ψ ⊂ Π is an embedding (of Ψ in Π ),
notation suggesting that Π “contains” all the parts of Ψ .
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The set of all colored partitions of degree m and length � is denoted as P�(m). The
set of all colored partitions with parts Xi ( ji ) of degree ji < 0 is denoted as P<0. We
shall fix a monomial basis

X(Π) = X1( j1)X2( j2) . . . X�( j�), Π ∈ P,

of the enveloping algebra U such that (15) holds. Then, by Poincaré–Birkhoff–Witt
theorem, we have a basis

X(Π) 1, Π ∈ P<0, (16)

of N (kΛ0), and on the quotient L(kΛ0) a PBW spanning set of the form (16).
Clearly B̄ ⊂ P , viewed as colored partitions of length 1. We assume that on P

we have a linear order � which extends the order � on B̄. Moreover, we assume that
order � on P has the following properties:

• �(Π) > �(Φ) implies Π ≺ Φ.
• �(Π) = �(Φ), |Π | < |Φ| implies Π ≺ Φ.
• Let �(Π) = �(Φ), |Π | = |Φ|. Let Π be a partition b1( j1) � b2( j2) � · · · �
b�( j�) and Φ a partition a1(i1) � a2(i2) � · · · � a�(i�). Then Π � Φ implies
j� ≤ i� .

• Let � ≥ 0, m ∈ Z, and let S ⊂ P be a nonempty subset such that all Π in S have
length �(Π) ≤ � and degree |Π | = m. Then S has a minimal element.

• Φ � Ψ implies ΠΦ � ΠΨ .
• The relation Π ≺ Φ is a well order on P<0.

The first four listed properties guarantee the existence of leading terms defined below,
and the last two are needed for inductive arguments in reducing the PBW spanning
set by using relations and their leading terms.

Remark 1 An order with these properties is used in [40]; colored partitions are com-
pared first by length and degree, and then by comparing degrees of parts and colors
of parts in the reverse lexicographical order. In this paper, we shall use the same order
on P extending a chosen linear order on B.

Remark 2 Note that for elements X1( j1), X2( j2), . . . , X�( j�) ∈ B̄ and any permuta-
tion σ we have

X1( j1)X2( j2) . . . X�( j�) − Xσ(1)( jσ(1))Xσ(2)( jσ(2)) . . . Xσ(�)( jσ(�)) ∈ U�−1. (17)

So if (15) holds andΠ = X1( j1) . . . X�( j�), our first requirement on order� and (17)
imply

Xσ(1)( jσ(1)) . . . Xσ(�)( jσ(�)) = X(Π) +
∑

Φ�Π

cΦX(Φ) (18)

for some coefficients cΦ for Φ ∈ P . Since we are mostly interested in the leading
terms of relations, due to (18) we shall often make no distinction between Π ∈ S and
X(Π) ∈ U .
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The relation r(k+1)θ (m), a coefficient of the annihilating field xθ (z)k+1, is an infinite
sum

r(k+1)θ (m) =
∑

j1+···+ jk+1=m

xθ ( j1) · · · xθ ( jk+1), (19)

and the smallest summand in this sum is proportional to

xθ (− j − 1)bxθ (− j)a (20)

for a + b = k + 1 and (− j − 1)b + (− j)a = m. Moreover, the shape of every other
term Φ which appears in the sum is greater than the shape (− j − 1)b(− j)a , so we
can write

r(k+1)θ (m) = c xθ (− j − 1)bxθ (− j)a +
∑

shΦ�(− j−1)b(− j)a

cΦX(Φ) (21)

for some c �= 0 and coefficients cΦ for Φ ∈ Pk+1(m). The adjoint action of U (g)
on r(k+1)θ (m), m ∈ Z, gives all other relations in R̄. For u ∈ U (g), the relation
r(m) = u · r(k+1)θ (m) can be written as

r(m) =
∑

shΨ =(− j−1)b(− j)a

cΨ X(Ψ )+
∑

shΨ �(− j−1)b(− j)a

cΨ X(Ψ )+
∑

�(Ψ )<k+1

cΨ X(Ψ ).

(22)
Let c be as in (21). The actions of u ∈ U (g) in g-modules U and S are different,

but because of (18) we have

u
(
c xθ (− j − 1)bxθ (− j)a

)
=

∑

shΨ =(− j−1)b(− j)a

cΨ Ψ

with the same coefficients cΨ as in the first summand in (22). Hence r(m) �= 0 if and
only if cΨ �= 0 for some Ψ . The smallest Ψ ∈ Pk+1(m) which appears in the first
sum in (22) with cΨ �= 0 we call the leading term of relation r(m) and we denote it
as �t r(m). Hence we can rewrite (22) as

r(m) = cΦX(Φ) +
∑

Ψ �Φ

cΨ X(Ψ ), Φ = �t r(m). (23)

Set

R = {�t r(m) | r ∈ R, m ∈ Z}, D = P \ {Ψ Φ | Ψ ∈ P, Φ ∈ R},

where we think of Ψ Φ as a product of monomials in S. In other words, D is the set
of all colored partitions which do not contain any leading term fromR or we say that
colored partitions inD satisfy difference conditionsR. Since r(m) = 0 on L(kΛ0), by
using (23) we can replace monomial X(Φ) with a combination of monomials X(Ψ ),
Ψ � Φ, and reduce the spanning set (16) to a smaller spanning set parametrized with
colored partitions satisfying difference conditions R:
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Proposition 1 The standard module L(kΛ0) is spanned by the set of vectors

X(Π) 1, Π ∈ D ∩ D<0. (24)

Remark 3 In spite of the fact that the spanning set (24) is obtained by using all defining
relations R̄ for level k standard modules, this set need not be a basis of L(kΛ0)! By
results in [18] and [40] it is a basis for ŝl2, but by [41] for ŝl3 it is not—at least it is not
a basis for a chosen ordered basis B of sl3. And then again, by [50], it is a basis for
the basic modules for affine Lie algebras of types A(2)

2 and B(1)
2 . In [41] it is shown

how it can happen that (24) is not a basis, but it is not clear “why” it happens—one
way or the other.

5 Simple Lie algebra of type Cn

We fix a simple Lie algebra g of type Cn , n ≥ 2. For a given Cartan subalgebra h and
the corresponding root system Δ we can write

Δ = {±(εi ± ε j ) | i, j = 1, ..., n} \ {0} .

We choose simple roots as in [11]

α1 = ε1 − ε2, α2 = ε2 − ε3, · · · αn−1 = εn−1 − εn, αn = 2εn .

Then θ = 2ε1. For each α ∈ Δwe choose a root vector Xα such that [Xα, X−α] = α∨.
For root vectors Xα, we shall use the following notation:

Xi j or just i j if α = εi + ε j , i ≤ j ,

Xi j or just i j if α = −εi − ε j , i ≥ j ,

Xi j or just i j if α = εi − ε j , i �= j .

With the previous notation xθ = X11. We also write for i = 1, . . . , n

Xii = α∨
i or just i i .

These vectors Xab form a basis B of g which we shall write in a triangular scheme.
For example, for n = 3 the basis B is

11
12 22
13 23 33
13 23 33 33
12 22 32 32 22
11 21 31 31 21 11.
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In general, for the set of indices {1, 2, · · · , n, n, · · · , 2, 1}, we use the order

1 � 2 � · · · � n − 1 � n � n � n − 1 � · · · � 2 � 1

and a basis element Xab we write in ath column and bth row,

B =
{
Xab | b ∈ {1, 2, · · · , n, n, · · · , 2, 1}, a ∈ {1, · · · , b}

}
. (25)

By using (25), we define on the basis B the corresponding reverse lexicographical
order, i.e.,

Xab � Xa′b′ if b � b′ or b = b′ and a � a′ .

In other words, Xab is larger than Xa′b′ if Xa′b′ lies in a row b′ below the row b, or
Xab and Xa′b′ are in the same row b = b′, but Xa′b′ is to the right of Xab.

For r ∈ {1, · · · , n, n, · · · , 1}, we introduce the notation

�r and r�

for triangles in the basis B consisting of rows {1, . . . , r} and columns {r , . . . , 1}. These
two triangles have vertices 11, 1r , rr and rr , r1, 11 with a common vertex rr . Note
that �r is above the vertex rr , and r� is below it. For example, for n = 3 and r = 3,
we have triangles �3 and 3�

11
12 22
13 23 33
13 23 33 33

32 22
31 21 11.

We say that [rs] = ad Xrs is an arrow on the basis B. Let Xα and Xβ be two
elements in the basis B and let

[α]Xβ = [Xα, Xβ ] =
∑

γ∈B
cαβγ Xγ . (26)

Than we say that the arrow [α] moves a point β to a point γ if cαβγ �= 0 and we write

β
[α]−→ γ or simply β−→γ.

We say that the arrow [α] does not move a point β if [α]Xβ = 0.
For example, for n = 3 and the arrow [21] we have 11 −→ 12 and 1r −→ 2r for

r �= 1, and s2 −→ s1 for s �= 1 and 21 −→ 11, or we may also write
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11
[21]−→ 12

[21]−→ 22 and 13
[21]−→ 23, 13

[21]−→ 23, 12
[21]−→ 22, 11

[21]−→ 21,

12
[21]−→ 11, 22

[21]−→ 21, 32
[21]−→ 31, 32

[21]−→ 31 and 22
[21]−→ 21

[11]−→ 11.

The arrow [α] = ad Xα acts as a derivation on the symmetric algebra S(g), so for
monomials with factors Xδ ∈ B we have

[α]
∏

δ∈B
Xmδ

δ =
∑

β∈B
mβ

∏

δ �=β

Xmδ

δ X
mβ−1
β

([α]Xβ

)

and, after inserting (26),

[α]
∏

δ∈B
Xmδ

δ =
∑

β,γ∈B
mβcαβγ

∏

δ �=β

Xmδ

δ X
mβ−1
β Xγ . (27)

In our (combinatorial) arguments based on this formula it will be convenient to visu-
alize the monomial

∏

δ∈B
Xmδ

δ

as the set of points at places δ in our triangle B, withmultiplicitiesmδ , and the resulting
monomials in (27)

∏

δ �=β

Xmδ

δ X
mβ−1
β Xγ

for cαβγ �= 0 we visualize as a set of points in the basis B obtained by moving one
point from the place β to the place γ , thus changing the multiplicities mβ �→ mβ − 1
and mγ �→ mγ + 1.

We prove the following lemmas by checking when α, β ∈ Δ implies α + β ∈ Δ.

Lemma 1 Let r ∈ {2, . . . , n}. Arrow [r1] moves
1. 1s −→ sr for s = 1, . . . , r ,
2. does not move any point in �r \ {11, 12, . . . , 1r}.
Lemma 2 Let r ∈ {3, . . . , n}. Arrows [21], [31], . . . , [r − 1, 1]
1. move 11 to points 12, 13, . . . , 1(r − 1),
2. move points 12, 13, . . . , 1(r − 1) into �r−1,
3. move 1r to sr for s = 2, . . . , r − 1,
4. do not move any point in �r \ {11, 12, . . . , 1r}.
We prove the following lemma by expressing a dual root α∨ in terms of simple

coroots α∨
1 , …, α∨

n :
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Lemma 3 Let r ∈ {2, . . . , n}. Then
1. [r1]X1r = −X11 · · · − Xr−1r−1 − 2Xrr · · · − 2Xnn ,
2. [rr ]Xrr = −Xrr · · · − Xnn.

Lemma 4 Let r ∈ {2, . . . , n}. Arrow [r1] moves
1. 1s −→ sr for s = 1, . . . , r , s �= r ,
2. ir −→ i1 for i = 2, . . . , r − 1, r ,
3. ri −→ i1 for i = r , . . . , r ,
4. apart from 1r , arrow [r1] does not move any other point in �r .

For s ∈ {1, . . . , n} and t ∈ {1, . . . , n} such that s = t we write t = s.

Lemma 5 Let r ∈ {1, . . . , n}. Arrow [s1], s ∈ {2, . . . , r + 1}, moves
1. 11 −→ 1s,
2. 1p −→ ps for p = 2, . . . , s, p �= s,
3. 1p −→ sp for p = s, . . . , r + 1, p �= s,
4. is −→ i1 for i = 2, . . . , s,
5. si −→ i1 for i = s, . . . , r + 1,
6. apart from 1s, arrow [s1] does not move any other point in �r .

Lemma 6 Let r ∈ {2, . . . , n}. Arrow [rr ] moves
1. ir −→ ir for i = 1, . . . , r − 1,
2. ri −→ ir for i = r + 1, . . . , r ,
3. apart from rr, arrow [rr ] does not move any other point in �r .

Note that for simple roots we have arrows

[21] = ad X−α1 , . . . , [n, n − 1] = ad X−αn−1 , [nn] = ad X−αn .

Lemma 7 Let r ∈ {1, . . . , n − 1}. Arrow [r + 1, r ] moves
1. ir −→ i(r + 1) for i = 1, . . . , r ,
2. ri −→ (r + 1)i for i = r + 1, . . . , 1, i �= r + 1
3. ir + 1 −→ ir for i = 1, . . . , r + 1,
4. r + 1i −→ ir for i = r , . . . , 1.

Lemma 8 Arrow [n, n] moves
1. in −→ in for i = 1, . . . , n,
2. ni −→ ni for i = n, . . . , 1.

6 Leading terms of relations for C(1)
n

With the order � on the basis B, we define a linear order on B̄ = {X( j) | X ∈ B, j ∈
Z} by

Xα(i) ≺ Xβ( j) if i < j or i = j, Xα ≺ Xβ.
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With the order � on B̄, we define a linear order on P by
Π ≺ Φ

if

• �(Π) > �(Φ) or
• �(Π) = �(Φ), |Π | < |Φ| or
• �(Π) = �(Φ), |Π | = |Φ|, shΠ ≺ shΨ in the reverse lexicographical order or
• �(Π) = �(Φ), |Π | = |Φ|, shΠ = shΨ , and colors of Π are smaller than the
colors of Ψ in the reverse lexicographical order.

For example,

X11(−3)2X11(−2)2X11(−2) ≺ X11(−3)X11(−3)X11(−2)3

because these two colored partitions have the same shape (−3)2(−2)3 with colors

11 11; 11 11 11 and 11 11; 11 11 11

and by comparing from the right, we see 11 = 11, 11 ≺ 11. Generally, we may
visualize colored partitions Π,Ψ ∈ P<0 by the corresponding Young diagrams. For
instance, the above-mentioned colored partitions are presented by

11

11

11

11

11

≺

11

11

11

11

11 .

A sequence of basis elements (Xa1b1 , Xa2b2 , · · · , Xasbs ) is a cascade C in the basis
B if for each i ∈ {1, 2, · · · , s−1}we have bi+1 ≺ bi and ai+1 = ai , or bi+1 = bi and
ai+1 � ai . We can visualize a cascade C in the basis B as a staircase in the triangle
B going downwards from the right to the left, or as a sequence of waterfalls flowing
from the right to the left. Sometimes we shall think of a cascade C as a set of points in
the basis B and write C ⊂ B.

We say that C is a cascade with multiplicities if for each Xai bi in C a multiplicity
maibi ∈ Z≥0 is given. By abuse of language, we shall say that in the cascade C with
multiplicities, Xai bi is the place aibi ∈ C ⊂ B with maibi points. We shall also write
a cascade with multiplicities C in the basis B as a monomial

∏

α∈C
Xmα

α .

For example,
X5
33X

0
23X

3
23X

1
22X

1
12 (28)

123



524 M. Primc, T. Šikić

Fig. 1 Triangular scheme of admissible pair of cascades

is a cascade with multiplicities which goes from 33 one step left, then two steps down
and than one step left. Along the way we have 5 points at the position 33, no points
on 23, 3 points on 23, and so on:

·
· ·
· 0 5
· 3 · ·
1 1 · · ·
· · · · · ·

For j ∈ Z and a cascade (with multiplicities) C, we can replace each Xai bi in C with
Xai bi ( j)—then we obtain a sequence (Xa1b1( j), Xa2b2( j), · · · , Xasbs ( j)) in B̄ which
we call a cascade (with multiplicities) C( j) at degree j . Sometimes we also denote a
cascade with multiplicities C( j) as

∏

α∈C
Xα( j)mα .

For example, the cascade with multiplicities C in (28) above gives us a cascade with
multiplicities C( j) at degree j :

X33( j)
5X23( j)

0X23( j)
3X22( j)

1X12( j)
1. (29)

Note that in (29) factors are not written in ascending order as in (15); here we prefer
a way of writing appropriate for cascade structure (see Remark 2). We say that two
cascades are an admissible pair (B,A) if

B ⊂ �r , and A ⊂ r�

for some r . We shall also consider the case when B is empty and A ⊂ 1�(= B). For
general rank, we may visualize admissible pair of cascades as shown in Fig. 1.

123



Leading terms of relations for standard modules of the affine Lie algebras C(1)
n 525

Theorem 2 Let

(− j − 1)b(− j)a, j ∈ Z, a + b = k + 1, b ≥ 0, (30)

be a fixed shape and let B and A be two cascades in degree − j − 1 and − j , with
multiplicities (mβ, j+1, β ∈ B) and (mα, j , α ∈ A), such that

∑

β∈B
mβ, j+1 = b,

∑

α∈A
mα, j = a. (31)

Let r ∈ {1, · · · , n, n, · · · , 1}. If the points of cascade B lie in the upper triangle �r

and the points of cascade A lie in the lower triangle r�, then

∏

β∈B
Xβ(− j − 1)mβ, j+1

∏

α∈A
Xα(− j)mβ, j (32)

is the leading term of a relation for level k standard module for affine Lie algebra of
the type C (1)

n .

Before we prove the theorem let us make a few remarks.

Remark 4 We believe that all leading terms of level k relations R̄ are given by (32). In
the case k = 1 and 2, we can check this by direct calculation. On one side, by using
Weyl’s character formula for the simple Lie algebra Cn , we have

dim L(2θ) =
(
2n + 3

4

)
,

dim L(3θ) =
(
2n + 5

6

)
.

On the other side, in the case k = 1 for the shape (− j)2 the number of leading
terms (32) is

2n∑

i1=1

i1∑

j1=1

2n∑

i2=i1

j1∑

j2=1

1 =
(
2n + 3

4

)
,

and for the shape (− j − 1)(− j)

2n∑

i1=1

i1∑

j1=1

2n∑

i2=i1

i2∑

j2=i1

1 =
(
2n + 3

4

)
.

In the case k = 2 and the shape (− j)3 the number of leading terms (32) is

2n∑

i1=1

i1∑

j1=1

2n∑

i2=i1

j1∑

j2=1

2n∑

i3=i2

j2∑

j3=1

1 =
(
2n + 5

6

)
,
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for the shape (− j − 1)2(− j)

2n∑

i1=1

i1∑

j1=1

2n∑

i2=i1

j1∑

j2=1

2n∑

i3=i2

i3∑

j3=i2

1 =
(
2n + 5

6

)
,

and for the shape (− j − 1)(− j)2

2n∑

i1=1

i1∑

j1=1

2n∑

i2=i1

i2∑

j2=i1

2n∑

i3=i2

j2∑

j3=i1

1 =
(
2n + 5

6

)
.

Remark 5 The Lie algebra g = sl2 may be regarded as of type Cn for n = 1, with the
standard basis B

x = x11 � h = x11 � y = x11.

The standard basis B can be written as the triangle

11
11 11

and Theorem 2 applies: for the shape (− j − 1)b(− j)a , j ∈ Z, a + b = k + 1, all
leading terms of relations for level k standard g̃-modules are monomials

x(− j − 1)bh(− j)a2x(− j)a1 , a1 + a2 = a,

x(− j − 1)b y(− j)a2h(− j)a1, a1 + a2 = a,

h(− j − 1)b1x(− j − 1)b2 y(− j)a, b1 + b2 = b,

y(− j − 1)b1h(− j − 1)b2 y(− j)a, b1 + b2 = b

(33)

(see Proposition 6.6.1 in [40]).

Example 1 In the case g = sl2, we obtain all leading terms (33) as

�t
(
(ad y)c(x(− j − 1)bx(− j)a)

)

for c = 0, 1, · · · , 2a + 2b. For example,

�t
(
(ad y)2(x(− j − 1)2x(− j)3)

)

= �t
(
(ad y)

( − 3x(− j − 1)2h(− j)x(− j)2 − 2h(− j − 1)x(− j − 1)x(− j)3
))

= �t
(
6x(− j − 1)2h(− j)2x(− j) − 6x(− j − 1)2y(− j)x(− j)2

+12h(− j − 1)x(− j − 1)h(− j)x(− j)2

+2h(− j − 1)2x(− j)3 − 4y(− j − 1)x(− j − 1)x(− j)3
)

= x(− j − 1)2h(− j)2x(− j).
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We visualize these calculations by representing monomials

(
y(− j − 1) f h(− j − 1)ex(− j − 1)d

)(
y(− j)ch(− j)bx(− j)a

)

as multiple points in two copies of triangle B, i.e.,

(
d
e f

)(
a
b c

)
,

and by representing the action of ad y with an arrow which moves the points from the
place x = 11 to the place h = 11, and from the place h = 11 to the place y = 11.
Then we can simplify and visualize previous calculation without explicitly keeping
track of coefficients: After applying one arrow on

(
2
0 0

) (
3
0 0

)

we obtain two terms by acting on two different factors

(
2
0 0

) (
2
1 0

)
,

(
1
1 0

)(
3
0 0

)
,

and the first monomial is smaller because in our reverse lexicographical order, we
compare parts from the right to the left

h(− j) ≺ x(− j), x(− j) = x(− j), x(− j) = x(− j).

Now we act with the second arrow on each of these monomials—from the first mono-
mial we obtain three terms

(
2
0 0

) (
1
2 0

)
,

(
2
0 0

)(
2
0 1

)
,

(
1
1 0

)(
2
1 0

)
,

and from the second monomial we obtain another three terms
(
1
1 0

) (
2
1 0

)
,

(
0
2 0

) (
3
0 0

)
,

(
1
0 1

) (
3
0 0

)
.

The smallest term is the very first monomial x(− j − 1)2h(− j)2x(− j) and we see
that our guiding “principle” should be: Act with an arrow on the largest part of the
smallest colored partition to obtain the smallest term.

In general we obtain all leading terms (33) in the following way: First for c ≤ a
we act with c arrows on

(
b
0 0

) (
a
0 0

)
,
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and acting always on the largest possible part x(− j), we get

(
b
0 0

)(
a − c
c 0

)
.

With c = a the smallest possible part to act on is h(− j) and with additional d arrows,
d ≤ a, we get

(
b
0 0

) (
0

a − d d

)
.

Once we have obtained a factor y(− j)a , the smallest part the arrow can act on non-
trivially is x(− j − 1), and we proceed with changing the left triangle.

Example 2 Essentially the same procedure used for g = sl2 can be used for g of type
Cn , n ≥ 2, a difference being in a use of different “kinds” of arrows acting on

X11(− j − 1)bX11(− j)a .

For example, by applying 2a arrows [21] to the factor X11(− j)a we get X22(− j)a .
We visualize this step as moving a points from the place 11 to the place 12 by using a
arrows [21], and after that by using another a arrows [21] we move a points from the
place 12 to the place 22 in the second row (see Lemma 6). Any additional [21] arrow
will act trivially on monomial X22(− j)a and will move points corresponding to the
factor X11(− j − 1)b. So with 2a + b + b′ = 2a + (b − b′) + 2b′ arrows we get a
relation with the leading term (with a premise that we can show it is really the leading
term)

⎛

⎝
0
b − b′ b′
· · ·

⎞

⎠

⎛

⎝
0
0 a
· · ·

⎞

⎠ .

By following the above idea and notation, after acting of 2a + b1 + b2 + 2b3 times
with arrows [32], we get a relation with the leading term

⎛

⎜⎜⎝

0
0 0
b1 b2 b3
· · ·

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0
0 0
0 0 a
· · ·

⎞

⎟⎟⎠ .

At certain point we could start constructing a cascade on (− j −1)b part, by using, for
example, only 2a + b1 arrows [43] to obtain a relation with the leading term
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⎛

⎜⎜⎜⎜⎝

0
0 0
0 b2 b3
b1 0 0 0
· · ·

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0
0 0
0 0 0
0 0 0 a
· · ·

⎞

⎟⎟⎟⎟⎠
.

After that we could use a + a′, (a′ < a), arrows [54] to start constructing a cascade
on (− j)a part and obtain a relation with the leading term

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0 0
0 b2 b3
b1 0 0 0
0 0 0 0 0
· · ·

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0 0
0 0 0
0 0 0 0
0 0 0 a − a′ a′
· · ·

⎞

⎟⎟⎟⎟⎟⎟⎠
,

that is, a relation with the leading term

X14(− j − 1)b1X33(− j − 1)b3X23(− j − 1)b2X55(− j)a
′
X45(− j)a−a′

.

This is a basic idea how relations with the leading terms (32) in Theorem 2 can be
constructed. However, there is a slight difficulty we should mention before writing a
formal proof.

Take, for example, n = 3 and the monomial of the form (32)

Π = X11(− j)n6X12(− j)n5X13(− j)n4X13(− j)n3X12(− j)n2X11(− j)n1

with n2 �= 0 and n5 �= 0. Observe that we have three kinds of arrows corresponding
to simple roots, moving one row to the next one:

11
[21]−→ 12

[32]−→ 13
[33]−→ 13

[32]−→ 12
[21]−→ 11 .

So for a = n1 + · · ·+ n6 we start with X11(− j)a and apply correct number of arrows
on largest possible parts and get

X11(− j)a · · · [21]−→ X12(− j)a−n1X11(− j)n1 · · ·
[32]−→ X13(− j)a−n1−n2X12(− j)n2X11(− j)n1 · · ·
[33]−→ X13(− j)a−n1−n2−n3X13(− j)n3X12(− j)n2X11(− j)n1 · · · .

But now we are stuck if we are to use only arrows [21], [32], and [33]: on one side,
for moving points from 13 to 12 we should use arrow [32], but in this way we will
not get the smallest term unless n2 = 0. (That is, for n2 �= 0 we will get a smaller
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term if we apply arrow [32] to a larger factor X12(− j)n2 .) The way around is to use
additional kind of arrows

11
[11]−→ 11 and 12

[22]−→ 12 .

With the use of these additional arrows, we can construct a relation with the leading
term Π :

X11(− j)a
[21]−→ [11]−→ · · · X11(− j)n6X12(− j)a−n1−n6X11(− j)n1

· · · [32]−→ [22]−→ X11(− j)n6X12(− j)n5X13(− j)n3+n4X12(− j)n2X11(− j)n1

· · · [33]−→ X11(− j)n6X12(− j)n5X13(− j)n4X13(− j)n3X12(− j)n2X11(− j)n1 .

We encounter a similar problem if we want to construct a relation with the leading
term

X11(− j)b1X21(− j)b2X31(− j)b3X31(− j)b4X21(− j)b5X11(− j)b6

“from the previous row” by using arrow [21],
12 22 32 32 22
↓ ↓ ↓ ↓ ↓
11 → 21 31 31 21 → 11 ,

because we cannot construct the factor Xb6
11 in a leading term by applying arrow on

Xb5+b6
21 unless b1 = 0.

Proof (Theorem 2) We construct a relation with the leading term (32) by precisely
defined application of arrows [rs] = ad Xrs on a coefficient of the relation

coeffzm X11(z)
k+1, m = b( j + 1) + aj − k − 1.

By previous remarks, the leading term of such relation has the shape (30) and it is
enough to analyze the action of arrows [rs] on the colored partition

Z0 = X11(− j − 1)bX11(− j)a .

Weprove the theorem in four steps. Since the leading term (32) reminds us ofwaterfalls
on Plitvice lakes, we title these steps as: preparation of upper barrier, construction of
upper cascades, preparation of lower barrier, and construction of lower cascade.
Preparation of upper barrier. Let t ∈ {1, · · · , n, n, · · · , 1} be the index of upper-
most row in which the upper cascade B in (32) has a point. For i ∈ {1, · · · , t} denote
by mi the sum of all multiplicities of B in the i-th column, i.e.,

mi =
∑

is∈B
mis, j+1, m1 + · · · + mt = b.
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In this step, we construct a relation with the leading term

X1t (− j − 1)m1X2t (− j − 1)m2 . . . Xtt (− j − 1)mt Xtt (− j)a .

We consider two cases: t ∈ {1, · · · , n} and t ∈ {n, · · · , 1}
Case 1. Let t = r , r ∈ {2, · · · , n}. Set

Z1 = [r1]2a+m1+mr [r − 1, 1]mr−1 . . . [31]m3 [21]m2 Z0. (34)

(Note that all listed arrows mutually commute.) Then for some c �= 0

Z1 = c X1r (− j − 1)m1+mr X1,r−1(− j − 1)mr−1 . . . X12(− j − 1)m2Xrr (− j)a

+
∑

M∈P
cMM . (35)

We obtain the first term by applying all arrows listed in (34) on factors X11(− j),
X1r (− j) and X11(− j −1) in the following way (see Lemma 1): 2a arrows [r1] move
X11(− j)a to Xrr (− j)a , i.e., for some c′ �= 0

[r1]2a X11(− j)a = c′ Xrr (− j)a, (36)

thenm2 arrows [21] move m2 factors X11(− j − 1) to X12(− j − 1)m2 , and so on until
m1 + mr arrows [r1] move m1 + mr factors X11(− j − 1) to X1r (− j − 1)m1+mr .
Multiple choice of factors on which any of the arrows may act gives a proportionality
constant c �= 0, and any other way that arrows act gives in (35) a combination of other
monomials M .

It will be convenient to say that an arrow [β] = ad Xβ is misused if it is not used
to produce the first term in (35) in the way described above.

If we act with less than 2a arrows [r1] on X11(− j)a , we get (cf. Lemmas 1 and 2)
a monomial M ′ with a factor Xβ(− j), β ∈ �r \ {rr}, and hence M ′ � Xrr (− j)a . So
assume that we have used 2a arrows [r1] on X11(− j)a , as in (36), but that we misused
the rest of arrows by acting on some other factor different from X11(− j − 1). Then
we get a monomial M with a factor X11(− j − 1), and this implies that M is greater
then the first term in (35), that is

�t Z1 = X1r (− j − 1)m1+mr X1,r−1(− j − 1)mr−1 . . . X12(− j − 1)m2Xrr (− j)a . (37)

Also note (cf. Lemmas 1 and 2) that all such monomials M have all other factors
Xβ(− j − 1) with β in the triangle �r , and at least one factor Xlm(− j − 1) with
l,m ∈ {2, . . . , r}.

Now set
Z2 = [r1]m2+m3+···+mr Z1. (38)
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Then for some c �= 0

Z2 = c X1r (− j − 1)m1X2r (− j − 1)m2 . . . Xrr (− j − 1)mr Xrr (− j)a +
∑

M∈P
cMM .

(39)
The first term we obtain by applying all arrows listed in (38) on the first term in (35)
in the following way: first m2 arrows [r1] move X12(− j − 1)m2 to X2r (− j − 1)m2 ,
and so on until mr arrows [r1] move X1r (− j − 1)mr to Xrr (− j − 1)mr .

Note that arrows [r1] cannot move Xrr (− j)a and that any arrow spent on X1s(− j),
s ∈ {2, . . . , r − 1}, will produce a monomial M ′ greater than Xrr (− j)a .

What is left to consider is the case when 2a arrows [r1] are used as in (36), and the
rest of m2 + · · · + mr arrows are not used as above. Then the action of m2 + · · · +
mr arrows [r1] on the first term in (35) will produce a monomial M with a factor
X1s(− j − 1), s ∈ {2, . . . , r}, or a factor X1r (− j − 1)p, p > m1, in either case a
monomial greater than the first term in (39).

On the other hand, we consider three cases of the action of m2 + · · · + mr arrows
[r1] on some M in the second summand (35):

(1) arrows will not move a factor X ps(− j − 1) for some p, s ∈ {2, . . . , r − 1} in
the case when M in (35) is obtained by misusing any arrow of the form [s1],
s ∈ {2, . . . , r − 1},

(2) if some of the arrows [r1] is misused, M will have a factor X1s(− j − 1) for some
s ∈ {2, . . . , r − 1}, or

(3) M will have a factor X1r (− j − 1)m1+p with p ≥ 1, we may briefly say that M
has an extra factor X1r (− j −1). In either of these cases M is greater than the first
term (39), i.e.,

�t Z2 = X1r (− j − 1)m1X2r (− j − 1)m2 . . . Xrr (− j − 1)mr Xrr (− j)a .

Case 2. Let t = r , r ∈ {1, · · · , n}. As in (34) we set

Z1 = [r1]2a+m1+mr

r+1∏

s=2

[s1]ms Z0 ; r ∈ {1, . . . , n − 1}

and for r = n

Z1 = [n1]2a+m1+mn

n∏

s=2

[s1]ms Z0 .

(Note that some listed arrows do not commute, for example [s1] and [s1].) Then for
some c �= 0

Z1 = c X1r (− j − 1)m1+mr

r+1∏

s=2

X1s(− j − 1)ms Xrr (− j)a +
∑

M∈P
cMM (40)

where for r = n we use notation r + 1 = n. By arguing in the same way as in Case
1, we see that the first term in (40) is the leading term �t Z1 of Z1.
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From Z1 we want to construct a relation with the leading term

Π =
r∏

s=1

Xsr (− j − 1)ms Xrr (− j)a . (41)

We will proceed as in the Case 1, by using arrows [r1], except for the factor X1r (− j −
1)mr where we encounter the following difficulty: the action

[r1] X1r = [X−ε1−εr , Xε1+εr ] = −(ε1 + εr )
∨ = −

∑

1≤s<r

α∨
s − 2

∑

r≤s≤n

α∨
s ,

or written in our notation,

[r1] X1r = −
∑

1≤s<r

Xss − 2
∑

r≤s≤n

Xss

(see Lemma 3), produce terms X11 ≺ · · · ≺ Xr−1r−1 ≺ Xrr . So the action of arrow
[r1] on X1r (− j − 1) produces factors Xss(− j − 1), s ∈ {1, . . . , r − 1}, which in turn
may produce monomials M smaller than Π . In order to avoid this difficulty, we use
the actions

[r1] X1r = c Xrr , [rr ] Xrr = −(2εr )
∨ = −Xrr − · · · − Xnn,

(for some c �= 0; see again Lemma 3). So the action of arrow [rr ] on Xrr (− j − 1)
produces factors Xss(− j − 1), s ∈ {r , . . . , n}, which are in the r -th row in the basis
B or above it. For this reason we “first act” on a factor X1r (− j − 1)mr to “empty the
place” 1r in the first column of the basis B:

[r1]mr X1r (− j − 1)mr = c Xrr (− j − 1)mr

(for some c �= 0), and then move further with arrows

[rr ]mr Xrr (− j − 1)mr = c′ Xrr (− j − 1)mr +
∑

M∈P
cMM,

(for some c′ �= 0). After that, we shall move factors X1s(− j − 1)ms , s �= r , from
the first column to factors Xsr (− j − 1)ms in the r -th row by using arrows [r1] (see
Lemma 4). This reasoning motivates us to set

Z2 = [rr ]mr [r1]mr

r∏

s=2,s �=r

[r1]ms Z1.

Then
Z2 = cΠ +

∑

M∈P
cMM
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for some c �= 0 and Π = �t Z2, where Π is given by (41). By arguing as in the Case
1, we obtain Π by acting with arrows on factors in the following way: for s �= r

[r1]ms X1s(− j − 1)ms = c′′
s Xsr (− j − 1)ms + . . .

for some c′′
s �= 0, and

[rr ]mr [r1]mr X1r (− j − 1)mr = c′c Xrr (− j − 1)mr + . . . .

We will say that any other way of using arrows on �t Z1 is misusing arrows.
If arrows [r1] are misused, we produce a factor Xsr (− j −1) for s ∈ {2, . . . , r −1},

or Xrs(− j − 1) for s ∈ {r + 1, . . . , r + 1}.
If arrows [rr ] are misused, we produce a factor Xrr (− j − 1) or an extra factor

Xrr (− j − 1)
If arrows [r1] are misused, we produce a factor Xrs(− j − 1) for some s �= 1, r , r

or an extra factor X1r (− j − 1). In either of these cases we obtain a monomial M
greater than Π .

The analysis of how the arrows [r1], [rr ], or [r1] act onmonomials M in the second
summand in (40) is analogous to the Case 1.
Construction of upper cascade. From the upper barrier

Z2 = Z2;t =
t∏

s=1

Xst (− j − 1)ms Xtt (− j)a +
∑

M∈P
cMM (42)

in a sequence of steps we construct a relation Z2;q with the leading term

∏

β∈B
Xβ(− j − 1)mβ, j+1 Xqq(− j)a, (43)

where q is the index of the lowest row in which the upper cascade B has a point, and
t is the index of the highest row in which B has a point. As above, for i ∈ {1, · · · , t}
we denote by mi the sum of all multiplicities of B in the i-th column, i.e.,

mi =
∑

is∈B
mis, j+1, m1 + · · · + mt = b.

Let p ∈ {1, · · · , t} be the index of the first column from the left for which the
multiplicity in B is not zero, in row t

mst; j+1 = 0 for s � p, 0 < mpt; j+1 ≤ mp, mst; j+1 = ms for p � s.

Let t ′ be the index of the first row in the basis B below t-th row. Since we can
write t = r = r the arrow [t ′t] is well defined. Then the action with arrows [t ′t]
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corresponding to a simple root (cf. Lemmas 7 and 8), moving factors from t-th row to
the next row below “like in waterfalls”

Z2;t ′ = [t ′t]2a+m1+···+mp−mpt; j+1 Z2;t
= c

∏

s�p

Xst ′(− j − 1)ms X pt ′(− j − 1)mp−mpt; j+1
∏

p�s

Xst (− j − 1)mst; j+1Xt ′t ′(− j)a

+
∑

M∈P
cMM .

(44)
It is easy to see that the first summand in (44) is obtained by using arrows [t ′t] on the
first summand in (42), moving first Xtt (− j)a to Xt ′t ′(− j)a , then “one-by-one” factors
Xst (− j − 1)ms to Xst ′(− j − 1)ms , and finally, mp − mpt; j+1 factors X pt (− j − 1)
to X pt ′(− j − 1). It is also easy to see that (apart from the constant c �= 0) the first
summand in (44) is the leading term of Z2;t ′ . We say that we constructed a waterfall
at p-th column.

Note that the arrows we used correspond to the simple roots, i.e., [t ′t] = ad X−αr

if t = r and [t ′t] = ad X−αr−1 if t = r for r ∈ {1, . . . , n}. If

ms = 0 for s � p,

then we move factors row by row by using the arrows corresponding to the simple
roots, producing a relation Z2;q with the leading term (43):

q∏

r=t

X pr (− j − 1)mpr; j+1
∏

p�s

Xst (− j − 1)mst; j+1Xqq(− j)a .

If

ms �= 0 for some s � p,

We take the smallest such p′′ � p and we find the first row below t-th row, say t ′′-th
row, such that

mp′′t ′′; j+1 �= 0.

Then we move, step by step, all the factors in i-th column, i ≺ p, from t ′-th row to
t ′′-th row, and create a waterfall at p-th column:

∏

s�p

Xst ′′(− j − 1)ms

t ′′∏

r=t

X pr (− j − 1)mpr; j+1
∏

p�s

Xst (− j − 1)mst; j+1Xqq(− j)a .

In such a way, we proceed and construct a relation with the leading term (43).
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Preparation of lower barrier. Let t ∈ {q . . . , 1} be the index of the uppermost row
in which the lower cascadeA in (32) has a point. For i ∈ {q, · · · , t} denote by mi the
sum of all multiplicities of A in the i-th column, i.e.,

mi =
∑

is∈A
mis, j , mq + · · · + mt = a.

In this step, we construct a lower barrier, i.e., a relation with the leading term

∏

β∈B
Xβ(− j − 1)mβ, j+1 Xqt(− j)mq . . . Xtt (− j)mt . (45)

In the previous steps, we have acted with arrows on leading terms of relations in
such a way that “the first” 2a arrows were “spent” on monomials in degree − j , i.e.,

[sr ]2a Xrr (− j)a = c′Xss(− j)a,

and any further action of arrows did not move monomial Xss(− j)a . Hence with the
rest of arrows we could construct the upper cascades (43).

In this step, we will obtain the leading term (45) by acting with arrows only on
factors Xγ (− j)with γ in a lower triangle q� , while the action on factors Xβ(− j −1)
will produce greater terms. For this reason, here we will omit writing factors in degree
− j − 1.

Let q ′ ≺ q be the index of the first column (row) next to the q-th column (row). As
before, we see that

Xqt (− j)mq+mt . . . Xqq ′(− j)mq′ = �t
(
[tq]mq+mt . . . [q ′q]mq′ Xqq(− j)a

)
.

If the set of points {qt, q ′t, . . . , t t} in the lower triangle q� does not contain the point
t t , then we apply

[tq]mq′+···+mt

to produce a relation with the leading term (45). On the other hand, if the set of points
{qt, q ′t, . . . , t t} contains the point t t , then we should modify our construction (as in
the Case 2 above) and, for moving the factor Xtq(− j)mt to Xtt (− j)mt via Xtt (− j)mt ,
we act with arrows

[t t]mt [tq]mt

instead of [tq]mt .
Construction of lower cascade. From a relation with the leading term (45), we
construct a relation with the leading term

∏

β∈B
Xβ(− j − 1)mβ, j+1

∏

α∈A
Xα(− j)mα, j
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in a way described in the construction of upper cascade, except that here we act with
arrows only on factors Xγ (− j) with γ in a lower triangle q� , while the action on
factors Xβ(− j − 1) will produce greater terms. ��

7 Conjectured colored Rogers–Ramanujan type identities

ByusingTheorem2,we can explicitly describe the reduced spanning set in Proposition
1. We conjecture that this spanning set is a basis:

Conjecture 1 Let n ≥ 2 and k ≥ 2. We consider the standard module L(kΛ0) for the
affine Lie algebra of type C (1)

n with the basis

{Xab( j) | ab ∈ B, j ∈ Z} ∪ {c, d},

where B = {ab | b ∈ {1, 2, · · · , n, n, · · · , 2, 1}, a ∈ {1, · · · , b}}.
We conjecture that the set of monomial vectors

∏

ab∈B, j>0

Xab(− j)mab; j v0, (46)

satisfying difference conditions

∑

ab∈B
mab; j+1 +

∑

ab∈A
mab; j ≤ k

for any admissible pair of cascades (B,A), is a basis of L(kΛ0).

As already mentioned, the conjecture is true for n = 1 and all k ≥ 1 [40] and
for k = 1 for all n ≥ 2 [49]. We have also checked by hand the corresponding
combinatorial identity below for partitions of m = 1, . . . , 8 in the case n = k = 2.

If our conjecture is true, then we have a combinatorial Rogers–Ramanujan type
identities by using Lepowsky’s product formula for principally specialized characters
of standard modules (see [31], cf. [40,43]). In the case of n = 2 and k ≥ 1, we
have product formulas for principally specialized characters of standardC (1)

2 -modules
L(kΛ0)

∏

j≥1
j �≡0mod 2

1

1 − q j

∏

j≥1
j �≡0,±1,±2,±3mod 2k+6

1

1 − q j

∏

j≥1
j �≡0,±1,±(k+1),±(k+2),k+3mod 2k+6

1

1 − q j
.

(47)
This product can be interpreted combinatorially in the following way: For fixed k let
Ck be a disjoint union of integers in three colors, say j1, j2, j3 is the integer j in colors
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1, 2, 3, satisfying the following congruence conditions

{ j1 | j ≥ 1, j �≡ 0mod 2},
{ j2 | j ≥ 1, j �≡ 0,±1,±2,±3mod 2k + 6},
{ j3 | j ≥ 1, j �≡ 0,±1,±(k + 1),±(k + 2), k + 3mod 2k + 6}.

(48)

Set | ja | = j . If we expand the product (47) in Taylor series, then the coefficient of qm

can be interpreted as a number of colored partitions of m

m =
∑

ja∈Ck
ja f ja . (49)

(To be correct, in (49) we should write m = ∑ | ja | f ja .) For example, for k = 2 we
have

C2 = {11, 31, 51, 71, . . . } � {42, 52, 62, 142, . . . } � {23, 83, 123, 183 . . . };

all ordinary partitions of m = 5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,

and all colored partitions of 5 with colored parts in C2 are

51, 52, 42 + 11, 31 + 23, 31 + 11 + 11, 23 + 23 + 11,

23 + 11 + 11 + 11, 11 + 11 + 11 + 11 + 11.

On the other hand, in the principal specialization e−αi �→ q1, i = 0, 1, 2, the
sequence of root subspaces in C (1)

2

Xab(−1), ab ∈ B, Xab(−2), ab ∈ B, Xab(−3), ab ∈ B, . . . (50)

obtains degrees
1
2 3
3 4 5
4 5 6 7

5
6 7
7 8 9
8 9 10 11

9
10 11
11 12 13
12 13 14 15

. . . (51)

One way or the other, in (51) we see almost two sequences of natural numbers and
almost one sequence of odd numbers. In order to make numbers distinct, we consider
four colors 1, 2, 3, 4, say

11
22 32
33 43 53
44 54 64 74

51
62 72
73 83 93
84 94 104 114

91
102 112
113 123 133
124 134 144 154

. . . , (52)
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so that numbers in the first row have color 1, numbers in the second row have color
2, and so on. In other words, for fixed n = 2 we consider a disjoint union D2 of
integers in four colors, say j1, j2, j3, j4 is the integer j in colors 1, 2, 3, 4, satisfying
the congruence conditions

{ j1 | j ≥ 1, j ≡ 1mod 4},
{ j2 | j ≥ 2, j ≡ 2, 3mod 4},
{ j3 | j ≥ 3, j ≡ 0, 1, 3mod 4},
{ j4 | j ≥ 4, j ≡ 0, 1, 2, 3mod 4}

(53)

and arranged in a sequence of triangles (52). For adjacent triangles in (52) correspond-
ing to

. . . , Xab(− j), ab ∈ B, Xab(− j − 1), ab ∈ B, . . .

in (50) and a fixed row r we consider the corresponding two triangles: r� on the left
and �r on the right. For example, for the third row we have r = 2 and two triangles
denoted by bullets

. . .

·
· ·
· · ·
· · · ·

·
· ·
· · •
· · • •

•
• •
• • •
· · · ·

·
· ·
· · ·
· · · ·

. . . (54)

are 2� on the left and �2 on the right. We say that two cascades

A ⊂ r� and B ⊂ �r

form an admissible pair of cascades in the sequence (52).
If ourConjecture 1 is correct, then the coefficient ofqm in the principally specialized

character of L(kΛ0) equals the number of basis vectors (46) of degree−m, i.e., equals
the number of colored partitions of m

m =
∑

ja∈D2

ja f ja (55)

satisfying difference conditions

∑

ja∈A
f ja +

∑

jb∈B
f jb ≤ k : (56)

for every admissible pair of cascades in the sequence (52).

Example 3 Let n = k = 2. Then the first nine terms of Taylor series (47) are

1 + q + 2q2 + 3q3 + 5q4 + 8q5 + 12q6 + 17q7 + 25q8 + · · · . (57)
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By enumerating all admissible cascades for the basis B of C2, we made a list of
4× 8 = 32 difference conditions. From the list of difference conditions and the list of
ordinary partitions, direct calculation gives all colored partitions of m = 1, 2, · · · , 8
with colored parts in D2:

1 = 11
2 = 22 = 11 + 11
3 = 32 = 33 = 22 + 11
4 = 43 = 44 = 32 + 11 = 33 + 11 = 22 + 22
5 = 51 = 53 = 54 = 43 + 11 = 44 + 11 = 32 + 21 = 33 + 21 = 32 + 11 + 11
6 = 62 = 64 = 51 + 11 = 53 + 11 = 54 + 11 = 43 + 22 = 44 + 22 = 43 + 11 + 11
7 = 72=73=74=62+11=64+11 = 51+22 = 53 + 22 = 54 + 22 = 53 + 11 + 11

= 54 + 11 + 11 = 43 + 32 = 43 + 33 = 44 + 32 = 44 + 33 = 43 + 22 + 11
= 32 + 32 + 11 = 32 + 33 + 11

8 = 83 = 84 = 72 + 11 = 73 + 11 = 74 + 11 = 62 + 22 = 64 + 22 = 62 + 11 + 11
= 64 + 11 + 11 = 51 + 32 = 51 + 33 = 54 + 32 = 54 + 33 = 53 + 32 = 53 + 33
= 53 + 22 + 11 = 54 + 22 + 11 = 43 + 43 = 43 + 44 = 44 + 44 = 43 + 32 + 11
= 43 + 33 + 11 = 44 + 32 + 11 = 43 + 22 + 22 = 32 + 32 + 11 + 11.

Hence the number of partitions (55) satisfying difference conditions (56) coincides
with the coefficients of above Taylor series (57) for m = 1, 2, · · · , 8.

We omit the details of calculations above; we will only explain how difference
conditions eliminated the colored partition 51 +22 +11 in the casem = 8. First of all,
notice that 51 belongs to the triangle Xab(−2), and 22 and 11 belong to the triangle
Xab(−1) (see 52). Now we choose r = 1 and consider the triangles 1� and �1

•
• •
• • •
• • • •

•
· ·
· · ·
· · · ·

One pair of admissible cascades is

m11;1
m12;1 ·
m12;1 · ·
m11;1 · · ·

m11;2
· ·
· · ·
· · · ·

and the corresponding difference condition (one of the 32 conditions) is given by

m11;2 + m11;1 + m12;1 + m12;1 + m11;1 ≤ 2 .
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Since m11;2 + m11;1 + m12;1 + m12;1 + m11;1 = 1 + 1 + 1 + 0 + 0 = 3 > 2, the
observed colored partition is eliminated from the list.

Conjecture 2 Let n = 2 and k ≥ 2. We conjecture that for every m ∈ N the number
of colored partitions

m =
∑

ja∈Ck
ja f ja

in three colors satisfying congruence conditions (48) equals the number of colored
partitions

m =
∑

ja∈D2

ja f ja

in four colors satisfying congruence conditions (53) and difference conditions (56) for
every admissible pair of cascades in the sequence (52).

Remark 6 It is clear how to extend the above conjecture toC (1)
n for n > 2. The product

formulas for principally specialized characters of some L(Λ0) and L(2Λ0) are given
in [43] and [45].

In the case n = 1 and k ≥ 1, the product formulas for principally specialized
characters of L(kΛ0) and the corresponding combinatorial identities are given in
[40].

In (54) we had several choices for triangles r� on the left and �r on the right. For
n = 1, we have only two choices: (i) 1� on the left and �1 on the right, and (ii) 1�
on the left and �1 on the right:

. . .
·
· ·

•
• •

•
· ·

·
· · . . . , . . .

·
· ·

·
· •

•
• •

·
· · . . . , (58)

Moreover, for n = 1, cascades are either vertical or horizontal. Altogether this gives
four conditions (12).

In the casen = k = 1, the corresponding identity is equivalent to one ofCapparelli’s
identities (see [5,15,40]).

In a way analogous to (54) and (58), we can also visualize difference conditions (6)
in the Rogers–Ramanujan case—it is just one difference condition (2) for two adjacent
points

· · · · • • · · · · .
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modules. Commun. Math. Phys. 264, 427–464 (2006)
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50. Siladić, I.: Twisted sl(3,C)̃ -modules and combinatorial identities. GlasnikMatematički 52(72), 55–79
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51. Trupčević, G.: Combinatorial bases of Feigin–Stoyanovsky’s type subspaces of higher-level standard

s̃l(� + 1,C)-modules. J. Algebra 322, 3744–3774 (2009)
52. Warnaar, S.O.: The A(2)

2n Rogers–Ramanujan Identities. arXiv:1309.5216

53. Xie, C.: Structure of the level two standard modules for the affine Lie algebra A(2)
2 . Commun. Algebra

18, 2397–2401 (1990)

123

https://doi.org/10.7282/T3154G81
http://arxiv.org/abs/1309.5216

	Leading terms of relations for standard modules of the affine Lie algebras Cn(1)
	Abstract
	1 Introduction
	2 Vertex algebras for affine Lie algebras
	3 Annihilating fields of standard modules
	4 Leading terms
	5 Simple Lie algebra of type Cn
	6 Leading terms of relations for Cn(1)
	7 Conjectured colored Rogers–Ramanujan type identities
	Acknowledgements
	References




