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Abstract— Mapping an unknown large-scale marine area by a
side-scan sonar onboard a marine vehicle as quickly as possible
is often of great importance. It is also important that a-priori
unknown interesting parts of the area are scanned in more
detail, i.e. with the removal of sonic shadows. In contrast
to the standard overlap-all-sonar-ranges lawnmower pattern,
which is an offline static coverage problem solution for side-scan
sonar missions, here a novel online side-scan sonar data-driven
coverage solution is proposed. The proposed coverage algorithm
provides a coverage solution based on local information gain
from side-scan sonar data. At the same time, the solution is
generated in such a way that coverage path length is minimized
while covering the same area as the standard lawnmower. Upper
and lower bounds of the proposed algorithm’s improvement
compared to the overlap-all-sonar-ranges lawnmower method
are estimated analytically and validated through extensive
mission parameters variation simulations. Simulation results
show that our approach can cut down coverage path length
significantly compared to the standard lawnmower method in
most application cases.

I. INTRODUCTION

Marine monitoring and exploration missions often include
side-scan sonar based seafloor mapping. This includes the
exploration of the biosphere, exploration of underwater ar-
chaeological sites, marine safety, and many other applica-
tions. Currently, side scan sonar missions are executed either
by a tethered towfish equipped with a side-scan sonar [1], or
by using remotely operated vehicles (ROVs) or autonomous
underwater vehicles (AUVs) [2]. Deploying a tethered tow-
fish from a boat requires hiring a boat, its crew, a towfish
operator, a side-scan operator, and of course experts in the
scientific field for which the survey is being conducted.

Towfish missions are most often executed in three phases.
The first phase is a general survey mission at a higher
altitude, whose goal is to identify possibly interesting parts
of the region being covered [1]. In this phase, the boat
tows a towfish in a lawnmower (LM) pattern to cover as
much area as possible, without or with a low percent of
overlaying side-scan sonar swaths. The second phase has a
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goal of getting detailed low altitude side-scan sonar images
of the manually tagged possibly interesting areas from the
first phase with side-scan sonar’s swaths overlaid to remove
any sonic shadows [1]. The third and final phase includes
deploying and ROV and/or an AUV, and recording the
identified interesting locations with a high-resolution camera,
as proposed in [2]. On the other hand, it would be much
more convenient and less costly to deploy an AUV and
let it autonomously scan the given area, executing all three
above mentioned area survey phases. It should gather more
information about parts of the coverage area that it finds
interesting for the current exploration mission, and lower
resolution general survey data about other parts of the area.

Solutions to problems similar to the one mentioned above
can be found in ground and aerial robotics literature, e.g.
in [3], [4] and [5]. In marine robotics literature, one of the
first papers to mention AUVs used for an online coverage
path planning (CPP) is [6]. In [7] an online CPP algorithm
generates an adaptive but constant-width LM pattern in order
to remove the gaps in measurements. An online informa-
tion/entropy based CPP approach for AUVs with side-scan
sonar is proposed in [8] with application in target localiza-
tion. It plans paths which reduce the expected entropy of
the surrounding environment w.r.t. coverage path length and
total turning angles. Target (hydrothermal vents) localization
online adaptive CPP approach with temperature spreading
model and multi-vehicle cooperation is presented in [9]. An
online approach to mapping of ever-changing marine habitat
by an AUV equipped with a camera and multi-beam sonar
is given in [10]. It covers arbitrarily identified regions of
interest (ROIs) from previous mapping missions in such a
way to minimize repeated coverage. Another sonar-based
survey path planning approach in [11] uses a-priori known
bathymetry data of the coverage area in order to find salient
points and cover them while minimizing vehicle position
and sensing uncertainties. In [12] side-scan sonar data is
improved for search missions through adapting the width of
LM lanes w.r.t. pose estimation and sonar data uncertainty.

Our research goal is to develop an online side-scan sonar
data-driven CPP algorithm for monitoring and surveying
large-scale (over 1km2) seafloor regions by an AUV, which
would replace all three above mentioned phases of survey
missions when using a towfish. Lawnmower pattern is one
of the most commonly used solutions for the 2D coverage
of an area to be scanned [13], [14]. In marine robotics, it
is typically used as a reference path for marine vehicles
equipped with a side-scan sonar [1], or other sensors [14]
for surveying missions.



The first step towards the above-mentioned research goal
is to design an algorithm for a 2D coverage problem, which is
a mix between the first and the second mission with towfish,
and which is presented in this paper. The idea is to start
the mission without overlapping sonar swaths, i.e. LM lanes
twice wider than sonar range. During the mission, in case that
the algorithm detects something interesting in the currently
traversed LM line, coverage path planning algorithm replans
the rest of the mission in order to sonify these interesting
objects from the opposite side as well, thus removing their
sonic shadows in side-scan sonar images.

Main contributions of this paper are: (1) an online side-
scan sonar data-driven coverage path planning algorithm for
large-scale unknown terrains presumably containing rela-
tively few interesting parts, which covers the area at best
with a twice shorter path, i.e. twice as fast as the statical
overlap-all-sonar-swaths LM coverage maneuver, (2) ana-
lytical best- and worst-case guarantees validated through
extensive mission parameters variation simulations, and (3)
statistical performance analysis of the proposed CPP al-
gorithm w.r.t. the coverage path length compared to the
nonadaptive static solution of overlap-all-sonar-swaths LM
coverage maneuver. Also, a function that estimates the
proposed CPP algorithm’s performance is proposed. It is
designed based on the extensive statistical analysis of the
proposed CPP algorithm’s performance w.r.t. the coverage
area topology and the expected chance of coming across
interesting objects in the given area. This can be of good
use to system engineers operating survey missions.

The rest of the paper is organized as follows: assumptions
and problem definition are given in Section II. Section III
describes the proposed algorithm, and models its best- and
worst-case scenario performance. Simulation results are pre-
sented in Section IV. Key results of this paper and future
work are concluded in Section V.

II. ASSUMPTIONS AND PROBLEM DEFINITION

A. Assumptions related to lawnmower pattern

Let us denote LM line length by L[m], width between LM
transects by W [m], and a parameter which denotes the ratio
between LM segment length and width, denoted by αlm:

αlm =
W

L
. (1)

Furthermore, parameter W depends on side-scan sonar’s
range wsss[m] which an AUV operator sets, i.e. W =
f(wsss). Generally, LM segments are set in such a way that
αlm � 1 holds, i.e. LM segments are much more elongated
than its segments are wide. Without the loss of generality,
it is assumed that the LM pattern starts at its local frame
origin, and spreads upwards and rightwards.

B. Assumptions related to AUV

Control side of mission execution is out of the scope
of this paper and is presented in our previous work [15].
Altitude control is decoupled from x−y position control. It is
assumed that the external disturbance to the vehicle is either

not present, or properly rejected by our model predictive
(MPC) path following controller presented in [15]. Our CPP
algorithm assumes the vehicle to be a point mass without any
dynamic behavior, so control level has a task to follow paths
which the CPP algorithm generates. It is also assumed that
localization is either perfect or improved by communication
of the AUV with an ASV as in [16], or a fixed beacon(s) as
in [17]. Hence the approach presented in this paper does not
minimize the number of turns during the mission, as does
[18], in order to reduce dead reckoning error which increases
the most during turning maneuvers.

It is also assumed that the blind spot of the side-scan sonar
(nadir), is not present (which holds if nadir is covered with
an additional multibeam sonar).

C. Assumptions related to sea floor configuration

The area which the vehicle should cover is assumed to
be relatively sparsely populated with objects of interest for
a given mission. In this paper information gain is defined
as a measure of local side-scan sonar data variation, as
in [19]. For each LM lane, a corresponding cost map is
computed, based on which the proposed CPP algorithm
makes decisions about possible replanning of the rest of
the mission. Moreover, it is assumed that the sea floor
is approximately flat. In case that the seafloor terrain is
significantly slanted dominantly along one direction, then the
lawnmower pattern mission should be oriented parallel to
terrain’s principal gradient. Since we are interested in large-
scale open sea areas to survey with side-scan sonar, it is not
assumed that obstacles are present in the environment. For an
arbitrarily shaped 2D region to cover, it is possible to make
a cell decomposition of the problem space, as is described
in [13] and [14].

D. Problem definition

The problem addressed in this paper can be defined as: In
order to cover a given unknown area of interest of dimensions
A × B[m] with a given side-scan sonar at a constant surge
speed u, and a constant altitude href , generate an initial LM
coverage pattern of length L and width W = 2wsss. During
the mission adapt the width of LM lanes as a multiple of
sonar range wsss depending on the detection of mission-
specific interesting objects in sonar data. Here covering
means getting the data from all informative objects (by
sonifying them from both sides) as in case of the overlap-all-
sonar-swaths LM pattern, while not sonifying uninteresting
parts of the area from both sides.

III. BASIC ACCORDION COVERAGE PATH
PLANNING ALGORITHM

In this Section, the proposed coverage algorithm which
we named Basic Accordion Coverage Path Planner (BA-
CPP) is described. It is a solution to the problem defined in
Subsection II-D. The name "accordion" was inspired by the
way this algorithm rearranges the LM pattern, expands and
contracts it in some parts, just as the accordion bellows do
while accordion is played. Also, from here on, the classical



overlap-all-sonar-swaths LM CPP method will be referred to
as the CL-CPP algorithm.

A. Behavior of the proposed algorithm

The initial solution of the BA-CPP algorithm is an LM
pattern with lanes twice as wide as the sonar range. This
is, of course, a good solution only if there is nothing of
interest for the mission in the area to be covered. In case
that the vehicle detects some interesting object(s) in its sonar
data while traversing the current LM line, the coverage path
planning algorithm should replan the rest of the mission
in such a way to sonify the interesting object(s) from the
opposite side, if that has not been already done. Also, it
should again (optimistically) assume that during the rest of
the mission it will not encounter any interesting objects, and
thus it will again generate the "stretched" LM pattern for
the remaining part of the mission. Moreover, in the limiting
case when the sea floor area of interest is densely covered
with interesting objects, the proposed coverage path planning
algorithm should behave as the CL-CPP.

Since the proposed CPP solution is a regular pattern,
at least in the initial moment of the mission, elementary
periods of the CL-CPP and the BA-CPP approach are given
in Fig. 1h and 1a, respectively. This is needed to analytically
predict the behavior of the CPP algorithm proposed in this
paper on a spatial period of width 4W , which ends with
a horizontal line. This way every LM pattern spatial period
starts with a vertical line and is of the same width. Heuristics
behind the area covering of CL-CPP, ensure that complete
coverage is achieved by the end of the mission, under the
assumptions stated in Section II-D. This is why it is not
insisted that the algorithm achieves a full coverage of the
current pattern spatial period, but instead to achieve globally
complete coverage in terms of acquiring all informative data
present within the whole coverage area.

The characteristic behavior of the proposed algorithm in
specific cases of interesting objects’ distribution is formally
described in Algorithm 1, and graphically represented in
Fig. 1 (Case 0). If the vehicle encounters no interesting
objects in the sonar image of the current LM line, which is
the best-case scenario, it will follow the initial LM pattern,
see Fig. 1a, line 1 in Algorithm 1. Method add_case_0(pose,
W, L, A) generates LM waypoints (WPs) from the starting
position pose, with LM lanes of width 2W and length L
until LM lanes reach coverage area’s width A.

If the vehicle detects something interesting to its right in
the cost map while moving "downwards" along the line 3 as
in Fig. 1b (Case 1), it will generate new waypoints in order
to perform a loopback to its right side (LM lines 4, 5, and
6), and thus sonify interesting objects’ sonic shadow(s) from
the opposite side, given in lines 11 and 12 in Algorithm 1.

It is important to note that methods add_case_1-6(pose,
W, L, A) generate LM waypoints (WPs) from the starting
position pose, with LM lanes of width W and length L as
graphically represented in Fig. 1 for each corresponding case
analyzed. This replans the coverage path based on local sonar
information gain. Calling the method add_case_0(pose, W, L,

Algorithm 1 Basic Accordion Coverage Path Planner

1: WPs = add_case_0(pose,W,αlm,L,A)
2: k = 0
3: while xauv ≤ A do
4: pose = WPs(k);
5: pose = move_to_next_wp(pose, WPs)
6: C = cost_map(sss_image(WPs(k):WPs(k+1)))
7: if contains_int_obj(C) then
8: if (obj_to_the_right&right_not_resonified) then
9: WPs(k + 1 : end) = [ ]

10: if (direction = ’down’) then
11: WPs.add_case_1(pose,W,L,A)
12: WPs.add_case_0(WPs(end),W,L,A)
13: else if (direction = ’up’) then
14: WPs.add_case_2(pose,W,L,A)
15: WPs.add_case_0(WPs(end),W,L,A)
16: else if (obj_to_the_left&left_not_resonified) then
17: WPs(k + 1 : end) = [ ]
18: if (direction = ’down’) then
19: WPs.add_case_3(pose,W,L,A)
20: WPs.add_case_0(WPs(end),W,L,A)
21: else if (direction = ’up’) then
22: WPs.add_case_4(pose,W,L,A)
23: WPs.add_case_0(WPs(end),W,L,A)
24: else if (obj_to_the_right&obj_to_the_left&
25: &right_not_resonified&left_not_resonified) then
26: WPs(k + 1 : end) = [ ]
27: if (direction = ’down’) then
28: WPs.add_case_5(pose,W,L,A)
29: WPs.add_case_0(WPs(end),W,L,A)
30: else if (direction = ’up’) then
31: WPs.add_case_6(pose,W,L,A)
32: WPs.add_case_0(WPs(end),W,L,A)
33: k ← k + 1

A) after this step generates LM lanes 2W apart until coverage
area’s edge, assuming no further interesting object detection.

If there is something in the current sonar range to the
right of the vehicle, as is the case while the vehicle moves
"upwards" along line 1 in Fig. 1c (Case 2), the BA-CPP
algorithm will generate new waypoints of LM line 3, W
meters to the right of the LM line 1, to ensure sonar shadows
sonification from the opposite side, and continue generating
2W -wide LM pattern, see lines 14 and 15 in Algorithm 1.

In case that the vehicle detects interesting objects to its
left side, e.g. while traversing "downwards" along the LM
line 3 in Fig. 1d (Case 3), BA-CPP will generate a new LM
line 5, which is W meters to the left of the vehicle. After
this line, it sets the line 6, again assuming no further LM
lanes containing interesting objects, see lines 19 and 20 in
Algorithm 1. If on the other hand, the vehicle encounters an
interesting object to its left side while traversing "upwards"
along the LM line 3 in Fig. 1e (Case 4), BA-CPP will
generate a new loopback LM line 5, which is W meters
to the left of the vehicle, and add the line 6, again assuming



no further LM lanes containing interesting objects, see lines
22 and 23 in Algorithm 1.

If the vehicle detects interesting objects both to its left
and right side, e.g. while following LM line 3 "downwards"
in Fig. 1f (Case 5), it will first do a loopback maneuver
to its right side (LM lines 4, 5, and 6), and follow a new
LM line 7, which is W meters to the right of the LM line
3. After this line, it sets the LM line 8, again assuming no
further LM lanes containing interesting objects. This is given
in pseudocode in lines 28 and 29 in Algorithm 1. In the
opposite case, when the vehicle moves "up" the LM line 3
as in Fig. 1g (Case 6), BA-CPP will generate a loopback
to the left of the vehicle (LM lines 4, 5, and 6), and line
7 in order to sonify acoustic shadows of the objects to the
right of its current LM line 3. This process is described by
pseudocode lines 31 and 32 in Algorithm 1.

In the limiting case, in which each LM lane contains
interesting objects, the BA-CPP algorithm behaves as the
CL-CPP, see Fig. 1h (Case 7). The worst-case scenario
occurs when the vehicle encounters the characteristic layout
of LM lanes containing interesting objects, as shown in
Fig. 1i (Case 8). The coverage path length for the current
LM spatial period stays the same as in Cases 5 and 6, but in
this case, the vehicle has to start the next LM spatial period
at a line which is W away from line 7, making its cumulative
coverage path significantly longer. Table I shows path lengths
for all the above mentioned cases in one LM pattern spatial
period, which are based on graphs depicted in Fig. 1a-1i.

B. Analysis of the upper and lower performance bounds
In this subsubsection the best- and the worst-case scenarios

for the BA-CPP performance are analyzed (based on the cov-
erage path lengths of the characteristic cases given in Table I)
in order to predict the upper and the lower bounds of its
performance. Performance measure, denoted by eBA−CPP

CL−CPP ,
is chosen to represent the relative improvement of the BA-
CPP generated coverage path length lBA−CPP w.r.t. the CL-
CPP path length lCL−CPP . In case that the sea floor area
which is being explored is devoid of any interesting objects
(see Fig. 1a), then the best-case scenario improvement which
the BA-CPP has over the CL-CPP algorithm, i.e. the upper
bound on eBA−CPP

CL−CPP , is given by:

ebestBA−CPP
CL−CPP =

1

2(1 + αlm)
100[%] (2)

If the parameter αlm → 0, the improvement of the BA-CPP
method tends to eBA−CPP

CL−CPP → Ebest = 50%, ensuring a
twice shorter coverage path than in case of the CL-CPP. On
the other hand, if αlm →∞, the relative improvement tends
to go to eBA−CPP

CL−CPP → 0%.
In case that the interesting objects are positioned in such

a way that the vehicle has do to a maneuver shown in
Fig. 1f in each LM pattern spatial period, then the worst-
case scenario improvement which the BA-CPP has over the
CL-CPP method, i.e. the lower bound on eBA−CPP

CL−CPP , is given
by:

eworstBA−CPP
CL−CPP =

−αlm

2(1 + αlm)
100[%] (3)

TABLE I: Path lengths for different specific cases of the
BA-CPP algorithm behavior. For reference to the BA-CPP
algorithm’s special behavior cases see Fig. 1.

Case Path length of the Path length of the
No. CL-CPP method BA-CPP method
0 4L+ 4W 2L+ 4W
1 4L+ 4W 3L+ 6W
2 4L+ 4W 3L+ 4W
3 4L+ 4W 3L+ 4W
4 4L+ 4W 3L+ 6W
5 4L+ 4W 4L+ 6W
6 4L+ 4W 4L+ 6W
7 4L+ 4W 4L+ 4W
8 4L+ 4W 4L+ 6W

This means that for αlm → 0, the BA-CPP is never worse
than the CL-CPP, i.e. eBA−CPP

CL−CPP ≥ 0%. On the other hand,
when αlm → ∞, the relative improvement tends to go to
eBA−CPP
CL−CPP → Eworst = −50%.

IV. SIMULATION RESULTS

A. Statistical analysis of algorithm performance

In order to gain further insight into the behavior of
the BA-CPP algorithms, its performance has been evalu-
ated for various values of mission dependent parameters
αlm and pobj . Parameter αlm have been varied as αlm ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1, 2}, while pobj took values from
0% to 100% with a 5% step. For each possible tuple
(αlm, pobj), 100 tests with appropriate information gain cost
maps have been generated, where the interesting objects
have been dispersed randomly. Coverage area C had val-
ues C ∈ {5.5, 3.8, 3.3, 2.73, 2.34, 2.05, 1.36}[km2] for each
αlm, respectively. Cost maps values were binarised in a way
that the value of c = 0.1 meant noninteresting areas, while
c = 1 meant interesting areas. Relative coverage path length
improvement of the BA-CPP algorithm over the CL-CPP
pattern was averaged over 100 tests per each (αlm, pobj)
parameter tuple.

The results of this analysis are shown in Fig. 2a. It can
be noted that the average improvement of the BA-CPP w.r.t.
the CL-CPP is most significant in the area defined by low
αlm, αlm ≤ 0.25, with pobj ≤ 20%. In these cases, the BA-
CPP generates coverage paths which are on average 25 −
50% shorter than the CL-CPP paths. For α ≤ 0.1, BA-CPP
coverage path is mostly shorter than the CL-CPP counterpart.

B. Best- and worst-case scenario analysis validation

The goal of the aforementioned parameter variation anal-
ysis was to validate analytical best- and worst-case per-
formance given in Subsection III-B. Aggregated distribu-
tions of relative coverage path improvements of the BA-
CPP algorithm w.r.t. the CL-CPP for each fixed αlm, and
varied pobj , are shown in Fig. 2b. Each of the boxplots
contains the respective improvement values obtained from
2100 simulations ran per each αlm value. It can be noted
that the simulation results of the best-case scenarios match
the predicted algorithm performance given by Eq. 2. For each
(αlm, pobj) tuple 2 worst-case scenarios, shown in Fig. 1f,



(a) Case 0: Best case, sea floor
area to be covered is devoid
of interesting objects, i.e. the
initial solution of the proposed
BA-CPP algorithm.

(b) Case 1: something was de-
tected to the right of the vehicle
in the cost map, while moving
downwards along the line 3

(c) Case 2: something was de-
tected to the right of the vehicle
in the cost map, while moving
upwards along the line 1
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(d) Case 3: something was de-
tected to the left of the vehicle
in the cost map, while moving
downwards along the line 3
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(e) Case 4: something was de-
tected to the left of the vehicle
in the cost map, while moving
upwards along the line 3

(f) Case 5: something was de-
tected both to the left and to the
right of the vehicle in the cost
map, while moving downwards
along the line 3
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(g) Case 6: something was de-
tected both to the left and to
the right of the vehicle in the
cost map, while moving up-
wards along the line 3

(h) Case 7: whole area to be
covered is fully covered by in-
teresting objects, i.e. CL-CPP
pattern.

(i) Case 8: Worst case, added
third LM lane in a row to have
interesting objects

Fig. 1: Basic accordion coverage path planning algorithm: Characteristic cases of interesting objects (white ellipses) placement
in current LM pattern period left and/or right of the current vehicle path in the cost map. Sonic shadows in side-scan sonar
data are denoted by gray areas.

have been generated, and the performance of the BA-CPP
algorithm in these cases also matches the predictions given
by Eq. 3.

Fig. 2c shows the percentage of simulations pbetter, for
each αlm, in which the BA-CPP generated shorter complete
coverage paths than the CL-CPP. It can be noted that even
for αlm ≤ 0.25 over 70% of simulations gave better results
using the BA-CPP instead of the CL-CPP. This percentage
jumps significantly to 90% and even 100% as αlm decreases
to values of 0.1, and 0.01, respectively. This fact serves as a
good example that shows how the BA-CPP generates shorter
complete coverage paths than the CL-CPP in a wide range
of parameter αlm values that mostly used in practice.

C. BA-CPP performance function extrapolation

To generalize the conclusion about the BA-CPP algorithm
performance, sample values of improvement percentages

eBA−CPP
CL−CPP resulting from the statistical analysis of the BA-

CPP performance, have been interpolated by using a poly-
nomial function of the third order of parameters αlm and
pobj by using Levenberg-Marquardt method. This function
is given by the following equation:

eBA−CPP
CL−CPP (αlm, pobj) =

3∑
i=0

3∑
j=0

kijα
i
lmp

j
obj (4)

where k00 = 50.2, k10 = −52.42, k01 = −0.6427, k20 =
34.86, k11 = −0.09411, k02 = −0.002369, k30 = −8.262,
k21 = −0.05325, k12 = 0.00327,and k03 = 4.38e − 05
are nonzero coefficients estimated within 95% confidence
bounds. This results is important from a system engineer’s
perspective, since it allows an estimate of possible survey
mission average speed-up based on an a-priori known value
of αlm, and a rough estimate of pobj .
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improvements relative to CL-
CPP method.
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630 simulations ran for each
αlm in which performance of
the BA-CPP was better than the
CL-CPP algorithm.

(d) Critical percentage of cov-
erage area populated with in-
teresting objects pcriticalobj for
which performance of the BA-
CPP deteriorates to perfor-
mance of the CL-CPP.

Fig. 2: BA-CPP algorithm performance analysis.

Curve eBA−CPP
CL−CPP (αlm, pobj) = 0 = pcriticalobj (αlm) is

shown in Fig. 2d. This curve represents the limit case in
which performance of the BA-CPP algorithm cannot be
guaranteed to be on average better than performance of the
CL-CPP. The main conclusion that needs to be stressed is
that even when αlm = 1, the coverage area can contain
even 35% of LM lanes populated with interesting objects in
order for the BA-CPP algorithm to have on average the same
performance as the CL-CPP method. For αlm ≤ 0.25, the
percentage of LM lanes of interest needs to be more than
70% for the BA-CPP to become equally inefficient as the
CL-CPP.

V. CONCLUSION AND FUTURE WORK

The BA-CPP is an online side-scan sonar data-driven
complete coverage path planning algorithm for unknown
large-scale marine areas. It is designed bearing in mind that
in most exploration and survey missions, LM segments are
significantly longer than wider, and that only a small part
of the coverage area is interesting for the survey mission.
The BA-CPP algorithm overlaps neighboring side-scan sonar
swaths only if they contain high information gain defined
specifically for the current mission. The proposed algorithm
replans the rest of the coverage mission taking estimated
local sonar data information gain into consideration. Algo-
rithm’s upper and lower performance bounds are estimated
analytically. Its performance is tested through extensive
mission parameters variation simulations, which validate
the modeled performance bounds. Simulation results show

significantly shorter coverage paths obtained by the BA-CPP
algorithm compared to the CL-CPP approach, which in a
limiting case, results in a twice shorter coverage path.

Our next goal is to improve the BA-CPP algorithm by
tightening its lower bounds of performance when it becomes
worse than the CL-CPP algorithm and also to minimize
coverage path length even further.
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