Pregled bibliografske jedinice broj: 950204
Machine Learning for the Internet of Things Security: A Systematic Review
Machine Learning for the Internet of Things Security: A Systematic Review // Proceedings of the 13th International Conference on Software Technologies / Maciaszek, Leszek ; van Sinderen, Marten (ur.).
Porto, Portugal: SCITEPRESS, 2018. str. 563-570 doi:10.5220/0006841205630570 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 950204 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine Learning for the Internet of Things Security: A Systematic Review
Autori
Andročec, Darko ; Vrček, Neven
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 13th International Conference on Software Technologies
/ Maciaszek, Leszek ; van Sinderen, Marten - : SCITEPRESS, 2018, 563-570
ISBN
978-989-758-320-9
Skup
13th International Conference on Software Technologies (ICSOFT 2018)
Mjesto i datum
Porto, Portugal, 26.07.2018. - 28.07.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Machine Learning ; Internet of Things ; IoT ; Security ; Systematic Review
Sažetak
Internet of things (IoT) is nowadays one of the fastest growing technologies for both private and business purposes. Due to a big number of IoT devices and their rapid introduction to the market, security of things and their services is often not at the expected level. Recently, machine learning algorithms, techniques, and methods are used in research papers to enhance IoT security. In this paper, we systematically review the state-of-the art to classify the research on machine learning for the IoT security. We analysed the primary studies, identify types of studies and publication fora. Next, we have extracted all machine learning algorithms and techniques described in primary studies, and identified the most used ones to tackle IoT security issues. We classify the research into three main categories (intrusion detection, authentication and other) and describe the primary studies in detail to analyse existing relevant works and propose topics for future research.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus