Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 948685

End-to-End Deep Learning Model for Base Calling of MinION Nanopore Reads


Miculinić, Neven
End-to-End Deep Learning Model for Base Calling of MinION Nanopore Reads, 2018., diplomski rad, Fakultet Elektrotehnike i Računarstva, Zagreb


CROSBI ID: 948685 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
End-to-End Deep Learning Model for Base Calling of MinION Nanopore Reads

Autori
Miculinić, Neven

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad

Fakultet
Fakultet Elektrotehnike i Računarstva

Mjesto
Zagreb

Datum
05.07

Godina
2018

Stranica
47

Mentor
Šikić, Mile

Ključne riječi
base calling ; Oxford Nanopore Technologies ; MinION ; deep learning, seq2seq, convolutional neural network ; residual network ; CTC loss
(base calling ; Oxford Nanopore Technologies ; MinION ; deep learning ; seq2seq ; convolutional neural network ; residual network ; CTC loss)

Sažetak
The MinION device by Oxford Nanopore Technologies is the first portable DNA sequencing device. Main advantages include producing longer reads than competing technologies and real-time data analysis making it suitable for a wide array of possible applications. Although long reads of up to 882 000 bp can be achieved, this comes at a cost - an error rate of 10% or higher. The goal of this thesis is to explore novel basecaller training technique using multi- task training and autoencoder loss as a secondary task to improve performance of basecalling. The model has been trained on R9.4 E.Coli dataset and has been compared with contemporary solutions on Klebsiella pneumoniae dataset. The complete source code is available on https://github.com/nmiculinic/minion-basecaller/.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mile Šikić (mentor)

Avatar Url Neven Miculinić (autor)


Citiraj ovu publikaciju:

Miculinić, Neven
End-to-End Deep Learning Model for Base Calling of MinION Nanopore Reads, 2018., diplomski rad, Fakultet Elektrotehnike i Računarstva, Zagreb
Miculinić, N. (2018) 'End-to-End Deep Learning Model for Base Calling of MinION Nanopore Reads', diplomski rad, Fakultet Elektrotehnike i Računarstva, Zagreb.
@phdthesis{phdthesis, author = {Miculini\'{c}, Neven}, year = {2018}, pages = {47}, keywords = {base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss}, title = {End-to-End Deep Learning Model for Base Calling of MinION Nanopore Reads}, keyword = {base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Miculini\'{c}, Neven}, year = {2018}, pages = {47}, keywords = {base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss}, title = {End-to-End Deep Learning Model for Base Calling of MinION Nanopore Reads}, keyword = {base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font