Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 946928

Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield


Šestak, Ivana; Mesić, Milan; Zgorelec, Željka; Perčin, Aleksandra
Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield // Environmental Earth Sciences, 77 (2018), 13; 506, 11 doi:.org/10.1007/s12665-018-7686-x (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 946928 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield

Autori
Šestak, Ivana ; Mesić, Milan ; Zgorelec, Željka ; Perčin, Aleksandra

Izvornik
Environmental Earth Sciences (1866-6280) 77 (2018), 13; 506, 11

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
winter wheat ; grain yield ; hyperspectral reflectance ; vegetation indices ; PLSR ; neural networks

Sažetak
The objective was to evaluate the ability of visible and near-infrared (NIR) spectroscopy to predict winter wheat grain yield, according to the performance of different prediction models. In situ reflectance measurements (350–1050 nm) were acquired from winter wheat flag leaves grown under nine mineral nitrogen (N) fertilization treatments (0–300 kg N ha−1), during stem extension developmental stage. Linear statistical models (MLR—multiple linear regression, PLSR—partial least squares regression) and non-linear prediction (ANN— artificial neural networks) were generated to estimate grain yield, based on derived variables from hyperspectral data as input features (first derivative of reflectance in form of principal components—PCs and vegetation indices —VIs). The expected influence of variable N fertilization on agronomic and spectral variables was recorded. The red and NIR reflectance contributed most to development of PCs, while VIs were calculated from 704 nm (λRED) and 785 nm (λNIR). Very strong positive relationship was determined between grain yield and VIs. ANN models were the most efficient in capturing the complex link between grain yield and leaf reflectance compared to the corresponding VIs, MLR and PLSR models, indicating good learning performance. In terms of N stress and non-N-limited environment, it can be concluded that the prediction methods used in this study can provide in-season estimates of winter wheat yield at a field scale based on hyperspectral data. Key spectral features and algorithms defined in this study should help to support site-specific and real- time yield forecasting in winter wheat production.

Izvorni jezik
Engleski

Znanstvena područja
Poljoprivreda (agronomija)



POVEZANOST RADA


Projekti:
MZOS-178-1780692-0695 - Gnojidba dušikom prihvatljiva za okoliš (Mesić, Milan, MZOS ) ( CroRIS)

Ustanove:
Agronomski fakultet, Zagreb

Profili:

Avatar Url Aleksandra Perčin (autor)

Avatar Url Ivana Šestak (autor)

Avatar Url Željka Zgorelec (autor)

Avatar Url Milan Mesić (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Šestak, Ivana; Mesić, Milan; Zgorelec, Željka; Perčin, Aleksandra
Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield // Environmental Earth Sciences, 77 (2018), 13; 506, 11 doi:.org/10.1007/s12665-018-7686-x (međunarodna recenzija, članak, znanstveni)
Šestak, I., Mesić, M., Zgorelec, Ž. & Perčin, A. (2018) Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield. Environmental Earth Sciences, 77 (13), 506, 11 doi:.org/10.1007/s12665-018-7686-x.
@article{article, author = {\v{S}estak, Ivana and Mesi\'{c}, Milan and Zgorelec, \v{Z}eljka and Per\v{c}in, Aleksandra}, year = {2018}, pages = {11}, DOI = {doi.org/10.1007/s12665-018-7686-x}, chapter = {506}, keywords = {winter wheat, grain yield, hyperspectral reflectance, vegetation indices, PLSR, neural networks}, journal = {Environmental Earth Sciences}, doi = {doi.org/10.1007/s12665-018-7686-x}, volume = {77}, number = {13}, issn = {1866-6280}, title = {Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield}, keyword = {winter wheat, grain yield, hyperspectral reflectance, vegetation indices, PLSR, neural networks}, chapternumber = {506} }
@article{article, author = {\v{S}estak, Ivana and Mesi\'{c}, Milan and Zgorelec, \v{Z}eljka and Per\v{c}in, Aleksandra}, year = {2018}, pages = {11}, DOI = {doi.org/10.1007/s12665-018-7686-x}, chapter = {506}, keywords = {winter wheat, grain yield, hyperspectral reflectance, vegetation indices, PLSR, neural networks}, journal = {Environmental Earth Sciences}, doi = {doi.org/10.1007/s12665-018-7686-x}, volume = {77}, number = {13}, issn = {1866-6280}, title = {Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield}, keyword = {winter wheat, grain yield, hyperspectral reflectance, vegetation indices, PLSR, neural networks}, chapternumber = {506} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font