Pregled bibliografske jedinice broj: 944897
A Comparison of Different State Representations for Reinforcement Learning Based Variable Speed Limit Control
A Comparison of Different State Representations for Reinforcement Learning Based Variable Speed Limit Control // Proceedings of MED-2018
Zadar, Hrvatska: Mediterranean Control Association, 2018. str. 266-271 doi:10.1109/MED.2018.8442986 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 944897 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Comparison of Different State Representations for Reinforcement Learning Based Variable Speed Limit Control
Autori
Kušić, Krešimir ; Ivanjko, Edouard ; Gregurić, Martin
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of MED-2018
/ - : Mediterranean Control Association, 2018, 266-271
ISBN
978-1-5090-4532-7
Skup
26th Mediterranean Conference on Control and Automation (MED 2018)
Mjesto i datum
Zadar, Hrvatska, 19.06.2018. - 22.06.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Intelligent transportation systems, Intelligent control systems, Variable speed limit control, Reinforcement learning, Tile coding, Coarse coding, RBF
Sažetak
Variable Speed Limit Control (VSLC) is one control method for alleviating congestions on urban motorways. Machine learning techniques, like Reinforcement Learning (RL), are a promising alternative for setting up VSLC because an optimal control policy can be achieved with a smaller computational burden in comparison with optimal control approaches. A drawback is a large number of learning iterations and the problem of the exponential expansion of the state space dimension. This can be solved with function approximation techniques. Three different approaches for feature-based state representation in RL based VSLC are compared in this paper regarding the convergence of Total Time Spent. The microscopic traffic simulator VISSIM with a representative traffic model is used to evaluate the compared approaches. Results show that function approximation methods outperform RL based VSLC formulated with a lookup table by an average improvement of 10 %, where feature extraction methods (Coarse and Tile) coding showed slightly faster learning rate.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Fakultet prometnih znanosti, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus