Pregled bibliografske jedinice broj: 943262
Joint Nonnegative Matrix Factorization for Underdetermined Blind Source Separation in Nonlinear Mixtures
Joint Nonnegative Matrix Factorization for Underdetermined Blind Source Separation in Nonlinear Mixtures // Lecture Notes in Computer Science 10891 / Deville, Y ; Gannot, S ; Mason, D ; Plumbley, M. D ; Ward, D (ur.).
Chenai: Springer, 2018. str. 107-115 doi:10.1007/978-3-319-93764-9_11 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 943262 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Joint Nonnegative Matrix Factorization for Underdetermined Blind Source Separation in Nonlinear Mixtures
Autori
Kopriva, Ivica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Lecture Notes in Computer Science 10891
/ Deville, Y ; Gannot, S ; Mason, D ; Plumbley, M. D ; Ward, D - Chenai : Springer, 2018, 107-115
ISBN
978-3-319-93763-2
Skup
14th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2018)
Mjesto i datum
Guildford, Ujedinjeno Kraljevstvo, 02.07.2018. - 06.07.2018
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
underdetermined blind source separation ; nonlinear mixtures ; empirical kernel map ; joint nonnegative matrix factorization ; sparseness
Sažetak
An approach is proposed for underdetermined blind separation of nonnegative dependent (overlapped) sources from their nonlinear mixtures. The method performs empirical kernel maps based mappings of original data matrix onto reproducible kernel Hilbert spaces (RKHSs). Provided that sources comply with probabilistic model that is sparse in support and amplitude nonlinear underdetermined mixture model in the input space becomes overdetermined linear mixture model in RKHS comprised of original sources and their mostly second-order monomials. It is assumed that linear mixture models in different RKHSs share the same representation, i.e. the matrix of sources. Thus, we propose novel sparseness regularized joint nonnegative matrix factorization method to separate sources shared across different RKHSs. The method is validated comparatively on numerical problem related to extraction of eight overlapped sources from three nonlinear mixtures.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Ivica Kopriva
(autor)