Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 943257

A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering


Tolić, Dijana; Antulov Fantulin, Nino; Kopriva, Ivica
A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering // Pattern recognition, 82 (2018), 10; 40-55 doi:10.1016/j.patcog.2018.04.029 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 943257 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering

Autori
Tolić, Dijana ; Antulov Fantulin, Nino ; Kopriva, Ivica

Izvornik
Pattern recognition (0031-3203) 82 (2018), 10; 40-55

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
subspace clustering ; non-negative matrix factorization ; orthogonality ; kernels ; graph regularization

Sažetak
A recent theoretical analysis shows the equivalence between non-negative matrix factorization (NMF)and spectral clustering based approach to subspace clustering. As NMF and many of its variants are essentially linear, we introduce a nonlinear NMF with explicit orthogonality and derive general kernelbased orthogonal multiplicative update rules to solve the subspace clustering problem. In nonlinear orthogonal NMF framework, we propose two subspace clustering algorithms, named kernel-based nonnegative subspace clustering KNSC-Ncut and KNSC-Rcut and establish their connection with spectral normalized cut and ratio cut clustering. We further extend the nonlinear orthogonal NMF framework and introduce a graph regularization to obtain a factorization that respects a local geometric structure of the data after the nonlinear mapping. The proposed NMF-based approach to subspace clustering takes into account the nonlinear nature of the manifold, as well as its intrinsic local geometry, which considerably improves the clustering performance when compared to the several recently proposed state-of-the-art methods.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo



POVEZANOST RADA


Projekti:
EK-H2020-654024
I-1701-2014
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Dijana Tolić (autor)

Avatar Url Nino Antulov-Fantulin (autor)

Avatar Url Ivica Kopriva (autor)

Citiraj ovu publikaciju:

Tolić, Dijana; Antulov Fantulin, Nino; Kopriva, Ivica
A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering // Pattern recognition, 82 (2018), 10; 40-55 doi:10.1016/j.patcog.2018.04.029 (međunarodna recenzija, članak, znanstveni)
Tolić, D., Antulov Fantulin, N. & Kopriva, I. (2018) A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering. Pattern recognition, 82 (10), 40-55 doi:10.1016/j.patcog.2018.04.029.
@article{article, author = {Toli\'{c}, Dijana and Antulov Fantulin, Nino and Kopriva, Ivica}, year = {2018}, pages = {40-55}, DOI = {10.1016/j.patcog.2018.04.029}, keywords = {subspace clustering, non-negative matrix factorization, orthogonality, kernels, graph regularization}, journal = {Pattern recognition}, doi = {10.1016/j.patcog.2018.04.029}, volume = {82}, number = {10}, issn = {0031-3203}, title = {A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering}, keyword = {subspace clustering, non-negative matrix factorization, orthogonality, kernels, graph regularization} }
@article{article, author = {Toli\'{c}, Dijana and Antulov Fantulin, Nino and Kopriva, Ivica}, year = {2018}, pages = {40-55}, DOI = {10.1016/j.patcog.2018.04.029}, keywords = {subspace clustering, non-negative matrix factorization, orthogonality, kernels, graph regularization}, journal = {Pattern recognition}, doi = {10.1016/j.patcog.2018.04.029}, volume = {82}, number = {10}, issn = {0031-3203}, title = {A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering}, keyword = {subspace clustering, non-negative matrix factorization, orthogonality, kernels, graph regularization} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font