Pregled bibliografske jedinice broj: 943257
A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering
A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering // Pattern recognition, 82 (2018), 10; 40-55 doi:10.1016/j.patcog.2018.04.029 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 943257 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering
Autori
Tolić, Dijana ; Antulov Fantulin, Nino ; Kopriva, Ivica
Izvornik
Pattern recognition (0031-3203) 82
(2018), 10;
40-55
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
subspace clustering ; non-negative matrix factorization ; orthogonality ; kernels ; graph regularization
Sažetak
A recent theoretical analysis shows the equivalence between non-negative matrix factorization (NMF)and spectral clustering based approach to subspace clustering. As NMF and many of its variants are essentially linear, we introduce a nonlinear NMF with explicit orthogonality and derive general kernelbased orthogonal multiplicative update rules to solve the subspace clustering problem. In nonlinear orthogonal NMF framework, we propose two subspace clustering algorithms, named kernel-based nonnegative subspace clustering KNSC-Ncut and KNSC-Rcut and establish their connection with spectral normalized cut and ratio cut clustering. We further extend the nonlinear orthogonal NMF framework and introduce a graph regularization to obtain a factorization that respects a local geometric structure of the data after the nonlinear mapping. The proposed NMF-based approach to subspace clustering takes into account the nonlinear nature of the manifold, as well as its intrinsic local geometry, which considerably improves the clustering performance when compared to the several recently proposed state-of-the-art methods.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
EK-H2020-654024
I-1701-2014
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus