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Abstract - Object detection is commonly used in many 

computer vision applications. In our case, we need to apply the 

object detector as a prerequisite for action recognition in 

handball scenes. Object detection, to be successful for this 

task, should be as accurate as possible and should be able to 

deal with a different number of objects of various sizes, 

partially occluded, with bad illumination and deal with 

cluttered scenes. The aim of this paper is to provide an 

overview of the current state-of-the-art detection methods 

that rely on convolutional neural networks (CNNs) and test 

their performance on custom video sports materials acquired 

during handball training and matches. The comparison of the 

detector performance in different conditions will be given and 

discussed.  
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I. INTRODUCTION 

Object detection is one of the fundamental tasks in 

computer vision, with the aim to find instances of real-

world objects such as people, cars, faces etc. in images or 

videos. Detection of an object implies prediction of the 

location of the object in an image along with the class it 

belongs to, so the challenge is to solve both object 

classification and object location problems. 

Object detection is commonly used in many applications 

of computer vision such as image retrieval, security and 

surveillance, autonomous car driving, and many industrial 

applications but a single best approach to face that problem 

doesn’t exist. The choice of the right object detection 

method depends on the problem that needs to be solved and 

on the set-up of the experiment.  

In our case, we need to apply the object detector as a 

prerequisite for action recognition on handball scenes.  For 

action recognition in team sports such as handball to be 

successful, object detection should be as accurate as 

possible, with reliable detection of relevant players, the ball 

and of other objects of interest [1]. Also, it should be able 

to deal with challenging conditions like the variable 

number of objects with a wide range of possible sizes 

ranging from players that can cover most of the image to 

the objects that are far away from the observer, that are 

occluded or those that can be as small as few pixels yet 

carry a lot of information, such as a ball. The environment 

in which sports videos are recorded is usually a sports hall, 

so the background is cluttered, with challenging 

illumination, with a variable number of players and with 

other not ideal conditions. In a highly dynamic setting of 

the handball domain, the motion blur and shadows that 

players cast under artificial illumination are often present 

in the videos, and the shape of the actors themselves vary 

greatly, making the problem even harder.  

There are many other factors which can degrade the 

detection of players, of the ball and of the lines on the 

playground that humans don’t even notice since it comes 

naturally to us. 
To tackle the object detection problem, many 

approaches have been proposed including the Viola-Jones 
detector with Haar Cascades [2], HOG gradient-based 
approaches [3], segmentation and template matching 
approaches, and recent state-of-the-art methods that rely on 
deep convolutional neural networks (CNNs). In the last few 
years, CNNs have achieved a tremendous increase in the 
accuracy of object detection and are widely considered as 
the de facto standard approach for the most image 
recognition tasks.  

Object detection in videos presents additional 
challenges, as it is usually desirable to track the identity of 
various objects between frames. It can be performed 
applying an object detector frame by frame, similarly as in 
case of images, or by using some kind of multi-frame 
fusion. The main difference between these approaches is, 
in fact, a compromise among speed, accuracy and required 
computational power. 

The rest of the paper is organized as follows: in Section 
II. we will present used the image and video object 
detectors that rely on CNN and emphasize their strengths 
and weakness. We have examined their performance on a 
custom dataset consisting of indoor and outdoor handball 
scenes recorded during training and matches. The 
comparison of the detector performance in different 
conditions and discussion are given in Section III. The 
paper ends with a conclusion and the proposal for future 
research.  

II. OBJECT DETECTORS 

Object detection and recognition includes both object 
classification and objects location problems. The desired 
result is to have a bounding box around a detected object 
that is labeled with its corresponding class label.  

One of the most notable and widely used object 
detectors in the past was a specialized face detector 
developed by Paul Viola and Michael Jones [2]. At that 
time, it was most precise and very fast, being able to 
perform face detection in real-time on webcam feed using 
hand-coded Haar features and a cascade of classifiers to 
make a prediction.  

To realize more general object detectors that can detect 
many object categories, as opposed to detectors tailored for 
a specific object class, e.g. face, a viable approach is to start 
with a simpler task of image classification. In image 
classification, researchers are nowadays mostly focused on 
convolutional neural networks (CNN) that are strongly 
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influenced by the results of authors of [3]. At first, CNNs 
like VGGNet [4], Inception [5], etc. were used for 
classification only. The process of image classification 
takes an image as input and gives as the output a prediction 
of the existence of a class or multiple classes in case of 
multi-label classification, but without providing location 
information [6].  

In order to extend the application of classifiers to the 
problem of object localization and to be able to detect 
object across the entire image, a sliding window approach 
is suggested. In that case, windows of different sizes 
corresponding to expected object sizes at various scales are 
positioned over overlapping parts of images to isolate parts 
of images that can be independently processed. If the 
classifier happens to recognize an object inside the window 
it will be labeled and marked by a bounding box for future 
processing. After processing the whole image, the result is 
a set of bounding boxes and corresponding class labels. 
However, the result can have a large number of 
unnecessary overlapping predictions. Also, the simple 
implementation of the sliding window approach can be 
very time consuming. With further development and by 
production of much more capable hardware, CNN based 
algorithms have been used to detect and localize objects as 
well. The Region with CNN features (R-CNN) (Fig. 1) [7] 
was a successful method that tried to optimize the sliding 
window approach. Before the image would be fed to a 
convolutional network for feature extraction, R-CNN 
would first create bounding boxes, called region proposals, 
using a selective search process [8]. After classification of 
each region using support vector machines, (SVM), R-
CNN performs a linear regression on region proposals with 
regard to the determined object class to generate tighter 
bounding box coordinates.  

 

Fig. 1. Principle of Selective search inside R-CNN according to [7] 

After this method was first proposed, a series of 
improved methods followed a similar approach. Fast R-
CNN [9] brought Region of Interest Pooling (RoIPool) 
which reduced the number of forwarding passes and have 
managed to join extracting image features (CNN), 
classification (SVM) and bounding boxes tightening. 
Faster R-CNN [10] improved selective search process by 
reusing CNN results for region proposals instead of running 
a separate selective search algorithm.  

A. Mask R-CNN 

Mask R-CNN [11] is an extension of Faster R-CNN that 
adds a parallel branch for predicting segmentation masks 
on each Region of Interest (RoI), in addition to existing 
branches in the network that output class labels and 
bounding box offsets (Fig. 2). The new mask branch is a 
small fully connected network (FCN) applied to each RoI. 

The Mask R-CNN otherwise follows the two-stage 
design of Faster R-CNN. The first stage is a Region 

Proposal Network (RPN) that proposes candidate object 
bounding boxes, or regions of interest (RoI). The RPN 
consists of a deep fully convolutional network that takes an 
image and outputs a feature map, upon which a smaller 
network is applied in a sliding window fashion. The smaller 
network takes a spatial window of the feature map, further 
reduces the feature dimension and then feeds them to two 
fully-connected layers, one that outputs the bounding box 
coordinates of proposed regions, and the other that outputs 
an „objectness“ score for each box, which is a measure of 
membership to a set of object classes vs. background. For 
each spatial window, k regions are proposed 
simultaneously based on reference boxes with pre-defined 
aspect ratios and scales called „anchors“, representing 
general object shapes, e.g. a tall box for a person.  

The training data for RPNs is generated from labeled 
ground truth data of object boxes in images, such that 
positive labels are assigned to anchors with the 
Intersection-over-Union (IoU) overlap with a ground-truth 
box greater than 0.5. In this way, multiple anchors may be 
labeled as positive based on a single ground-truth box.  

 
Fig.  2. The stages of Mask R-CNN 

The RPNs are trained end-to-end by backpropagation 
and stochastic gradient descent SGD. The images are 
resized such that their scale (shorter edge) is 800 pixels. 
From each training image, N RoIs are sampled so that the 
ratio of positive to negatives examples is 1:3, in order to 
avoid the dominance of negative examples in the data. In 
the Mask R-CNN, the COCO dataset was used for training, 
while in the Faster R-CNN the PASCAL VOC was used. 

Mask R-CNN generates masks and bounding boxes for 
all possible classes independently from classification, and 
finally, the result of the classification branch is used to 
make the selection of boxes and masks.   

B. YOLO object detector  

The “You only look once” (YOLO) [12] is another 
method showing promising results. It is reported to be less 
accurate in some cases than previously mentioned but it is 
much faster using the same hardware.  

YOLO and its second revision YOLOv2 [13] are 
similar to R-CNN, in that they use potential bounding 
boxes from which convolutional features are extracted, but 
differ from the Faster R-CNN systems by using a single-
stage network architecture to predict class probabilities and 
bounding boxes without a separate stage for the region of 
interest proposal.  

The system divides the input image into a cell grid and 
produces a probability distribution of object classes for 
each cell. At the same time, a fixed number of candidate 
bounding boxes with the corresponding confidence scores 



are predicted for each cell (2 in the original YOLO 
implementation). The confidence score measures both how 
confident the system is that the box contains an object, and 
how accurate the box is. Target confidence values for cells 
containing no objects is zero, while for other the confidence 
should be the intersection-over-union score between the 
predicted and the ground truth boxes.  

During training, if an object spans multiple cells, only 
the cell containing the object center is ”responsible“ for 
predicting the bounding box for that object. In other words, 
the loss function for bounding box regression doesn't 
penalize all cells containing the same object, but only the 
central one.  

Even though more than one bounding box is proposed 
per cell, only one class is predicted in each cell (Fig. 3). The 
network architecture of the original YOLO model consisted 
of 24 convolutional layers followed by 2 fully connected 
layers, where the convolutional layers extract features from 
the image while the fully connected layers output box 
predictions and probabilities.  

Fig.  3. YOLO object detection model divides the image into a grid 
and for each cell predicts bounding box, confidence for these boxes and 
class probability. 

In the YOLOv2 system, this network architecture was 
replaced by a model with 19 convolutional layers with 
mostly 3x3 filters and 5 max-pooling layers, called darknet-
19. The fully connected layers of YOLO were removed, 
and the bounding box proposal is modified, so instead of 
box coordinates, transformations of predefined anchor 
boxes are predicted. This is similar to the Mask R-CNN 
network, which also outputs shifts of pre-defined anchor 
boxes. In the YOLOv2 case, the anchor boxes are 
determined using the k-means clustering on a training set 
of ground truth bounding boxes and the translations of the 
boxes are relative to the grid cell. For each cell, 5 bounding 
boxes are proposed. The class predictions are now coupled 
with anchor boxes instead of cells, so for each bounding 
box, a class is predicted in addition to the objectness score, 
i.e. the confidence score of a box containing an object.  

The network was trained on the combined dataset 
consisting of public available MS COCO detection dataset 
[14] and the top 9000 classes from the full ImageNet. The 
training was performed in several steps.  

C. Mixture of Gaussians method 

A common approach for locating moving foreground 
objects in scenes with predominantly static background 
involves background subtraction, where an approximation 
of background, usually an average image of several frames, 

is subtracted from a current frame (Fig. 4). Regions where 
this difference between the current frame and the 
background is greater than a chosen threshold are marked 
as foreground. 

 
 

Fig.  4. The principle of background subtraction approach [15] 

In practice, even in scenes shot with a stationary 
camera, the background is hardly ever static and can vary 
in time due to changes in lighting conditions, time-varying 
textures of background objects, e.g. waves on the water, 
clouds, etc. Several different background models and 
means of updating them have been developed to deal with 
this problem. Here we use the Mixture of Gaussians model 
(GMM) [16], where each pixel in an image is modeled as 
coming from a mixture of K Gaussian distributions that are 
continuously updated as the video progresses in time.  

The GMM parameters are estimated based on the recent 
history of each pixel, using an online K-means 
approximation of the EM algorithm. Every new pixel value 
is checked with the existing K Gaussians to find a match, 
defined as a pixel value within 2.5 standard deviations of a 
distribution. If there is a match, the weights of distributions 
in the mixture are updated to give more weight to the 
matched distribution, and the mean and variance 
parameters of the matching distribution are updated to 
reflect the influence of the current pixel. When there is no 
matching Gaussian for the new pixel value, the least 
probable distribution in the mixture is replaced with a 
distribution with a low weight, whose mean is the current 
pixel value, and has a high initial variance. 

In order to classify pixels into background or 
foreground classes, a heuristic rule is applied to determine 
which distributions in the mixture model the background. 
The Gaussians in the mixture are sorted in decreasing order 
of weight-to-standard-deviation ratio. The first B Gaussians 
are chosen as the background model, where B depends on 
a pre-set minimum portion of the data that should be 
considered the background.  

The pixels whose values do not match one of the pixel’s 
backgrounds Gaussians are considered to be foreground 
objects and are grouped using connected components.  

III. COMPARISON OF GMM, YOLO AND MASK R-CNN 

DETECTION PERFORMANCE ON HANDBALL SCENES 

In this experiment, we have tested the YOLOv2 and 
Mask R-CNN object detectors based on CNNs, as well as 
the MOG background subtraction method on characteristic 
examples from the handball video domain.  



The comparison was made on a custom dataset 
consisting of indoor and outdoor sports footage during 
practice and competition. The dataset contains 751 videos 
with 1920x1080 resolution at 30 frames per second, and the 
total duration of the recorded material is 1990 s. The scenes 
were captured using stationary GoPro cameras from 
different angles and in different lighting conditions. The 
cameras in indoor scenes were mounted at a height of 
around 3.5 m to the left or right side of the playground. 
Outdoor scenes have the camera at a height of 1.5 m. 
Depending on the players height, position in the field, and 
the camera viewpoint the size of the player in the image 
ranges from 40 to 240 pixels.  

Both YOLO and Mask R-CNN were applied using only 
the CPU on the same hardware inside separate virtual 
machines for most reliable comparison. Publicly available 
pre-trained models were used with their corresponding 
weights build on COCO dataset, with no additional training 
with our own dataset.  

To perform tests a high-level neural networks API 
Keras was applied on top of an open-source machine 
learning framework Tensorflow with a use of Python 
programing language in Ubuntu Linux environment. 
According to [12] the first method, YOLO, performs real-
time object detection at 45 frames per second on a Titan X 
GPU and a fast version runs at more than 150 fps.  

The other method, Mask R-CNN, predicts an object 
mask in parallel with the recognition of bounding boxes. 
This adds a small computational overhead according to [11] 
but gives much more information about the body posture. 

On our hardware, using only the CPU, it on average 
18.47 seconds for Mask-RCNN to process a 1920x1080 
RGB color video frame, while YOLO performed much 
faster, with 0.94 seconds per frame. It is important to notice 
that both methods resize input data, Mask R-CNN to 
1024x1024 and YOLO to 608x608 therefore using higher 
resolution images would not contribute much to the result. 

The MOG background subtraction method is used as a 
baseline in the comparison vs. the full object detectors. The 
idea is to detect moving objects (players and balls) in the 
otherwise static scene of a sports field, shot with a 
stationary camera. Differences between consecutive frames 
are used to distinguish foreground objects from the mostly 
stationary background. It should be noted that the 
background subtraction methods do not attempt to 
determine the class of the detected foreground object, but 
just examine if they belong to the foreground, which may 
be compared with the “objectness” score of the CNN 
methods. In the experiment, the raw results of background 
subtraction were post-processed using the 3x3 square 
opening, 15x15 square closing and with hole-filling 
morphological operators. 

Detectors performance are compared with the ground 
truth and evaluated in terms of recall, precision and F1 
score [17]. For the YOLO and Mask R-CNN detectors that 
report confidence scores, we only considered detection 
whose confidence is greater than 85%, to avoid a large 
number of false positives otherwise reported by both 
detectors. For example, without the confidence threshold, 
the Mask R-CNN detected 27 persons per image in average, 

while the average number of players was in fact 10, so the 
confidence threshold was chosen accordingly. For MOG, 
all detections were considered. 

To count a detection as true positive, more than half of 
the area belonging to the player should be inside the 
detected bounding box. The detector efficiency depends 
heavily on the number and size of objects on the scene, as 
well as the occlusion of objects. Fig, 5. shows the results of 
the evaluation of the results in the case of a simple and 
complex scenario. A simple scenario includes fewer 
objects, up to 8, close to the camera. A complex scenario is 
when the number of objects on the scene is equal and 
greater than 9, away from the camera and with the 
occlusions.  

 

Fig.  5. Evaluation results for Mask R-CNN, Yolo and GMM in simple 

and complex scenarios  

 
The detection results of three mentioned methods on 
characteristic handball scenes are presented in the 
following figures. The indoor handball scenes are presented 
in Fig. 6. The upper row of Fig. 6. is a result of MOG, 
middle of YOLO and lower of Mask R-CNN. By 
examining middle left figure, it is notable that compared to 
lower one YOLO has difficulty detecting objects smaller 
than 50 pixels in height.  

The same is with overlapping objects which are very 
common in the indoor type of sports. It still made a 
detection of the person sitting at the far end of the court 
even though there are closer objects more easily 
distinguished to the human eye. On the other hand, MOG 
has detected persons that have moved, regardless of their 
size, but made a lot of mistakes. A lot of bounding boxers 
were placed where there were no players (FP), due to often 
highly reflective playing field, light changing and shadows 
that players cast under artificial illumination. Due to the 
different speeds of some objects, body parts such as arms 
and legs or head are detected as a separate object. Mask R-
CNN had no problems with player detection and did not 
detect body parts as separate objects. Also, the players who 
were away from the camera, small and did not move 
sufficiently were not detected with MOG.  

The middle picture in the second column (YOLO) 
shows less than a half of the objects detected by Mask R-
CNN. The object of interest, the coach dressed in blue, is 
harder to detect compared to the rest of the video footage 
processed by YOLO, showing that YOLO has difficulty 
distinguishing objects with a similar color to the 
background. 



MOG has no problems if an object with a similar color to 
the background is moving since detection depends on 
differences between frames. Mask R-CNN and MOG were 
also successful in detecting the person coming to scene 
from the left, but MOG had several false positives.  

In an example of occlusion, on the images in the right 
column, YOLO has better results. It detects more persons 

and even the sports ball. Mask R-CNN again has FP 
detecting a reflection of the light on the floor as a person 

Fig.  6. MOG (upper row), YOLO (middle row) and Mask R-CNN (lower row) results on indoor sport footages 

 

 

 

 

 

 

 

 

 
 

    
 

    



(bottom left). For MOG, the net through which the scene 
was recorded was too big an obstacle, and as the net was 
shaken, MOG has detected a lot of parts of the net as 
foregrounds objects.  

Fig. 7. shows results in an outdoor scene. The image 
contains few players, with no overlapping and only one 
partly visible object (a car) which is not important for the 
sport of interest. Both YOLO and Mask R-CNN have 
performed well, but MOG was significantly worse, with 
FPs and missed detections (FN). 

Both YOLO and Mask R-CNN methods struggle with 
detecting sports balls. Figure 8. is an example where Mask 
R-CNN was unable to detect the ball, while YOLO and 
MOG detected one out of two balls. Mask R-CNN however 
detected one more person at a distance than YOLO. It is 
important to notice that shadows which can be detected as 
real objects have not confused any of the methods.  

IV. CONCLUSION 

The analysis of the obtained results shows that Mask R-
CNN is more appropriate in the footages of team sports 
because it can successfully detect individual players even 
when they are inside a group. Also, it has more success 
detecting individuals further away from the camera. An 
additional benefit is a mask around the detected object, 
which, with slightly more computation power, provides 
significant information which can be used to isolate it from 
the background. The problem with this method is that it 
requires more time and computation power.  

It was faster to test and finetune YOLO on real-time 
data with satisfying results. In the majority of acquired 
video footages, YOLO has proven to be sufficient and in 
case of occlusion even better than Mask R-CNN. The MOG 
detector works fast but has proved to have too many false 
detections in comparison with both YOLO and Mask R-
CNN, as it was expected due to it being a binary 
background/foreground detector working only on motion 
data. 

 Even though Mask R-CNN lacks a possibility of the 
fast and easy on-the-field-analysis, taken into account 
further hardware and algorithm development it can be 
concluded with high probability this will be solved in the 
near future. 

The one thing YOLO and Mask R-CNN methods had a 
problem with is the inability to reliably detect the sports 
ball. This could be due to fact that shape and texture of it 
share same features like many other objects (head, lamp, 
decorations). Probable solution would be to take into 
account existence and position of the ball near a player 
during the training phase to overcome this behavior. The 
interesting observation is that even though shadows of 
many objects resemble the actual object, they were (almost) 
never mistaken for a ground truth. Possible combination of 
the tested methods, which would result in benefits from 
both, should be further research but it falls outside the scope 
of this research paper. 

This paper provides a promising base ground for further 
research of activity recognition in video material. By 
selecting the optimal solution and adjusting it to a certain 
activity it could be even possible to subtract the leading 

player and predict its movement or even an outcome of the 
action. 
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