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Abstract—We propose a new algorithm for portfolio optimiza-
tion based on statistical arbitrage, that uses a multi-criteria
decision making approach to obtain the most preferred assets.
A preference flow graph of financial assets is constructed at
each time step, with the aid of statistical arbitrage algorithm
that describes preferences among the assets. Then, the individual
preferences for each asset are obtained by using the potential
method, and the most preferred assets are selected into the
portfolio in accordance to them. A consistency measure of the
preference flow graph is also obtained using the same method,
and it measures the reliability of the decision making.

The proposed method has been tested on a selection of S&P 500
constituent stocks from 1980 to 2004. The results indicate that
the proposed method performs well in the considered market,
which is indicated by high Sharpe ratios of the constructed
portfolios. We also report that the algorithm performs better
when provided with a larger number of assets, showing that the
increased number of considered assets provides more insight into
the market behavior.
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I. INTRODUCTION

With the rapid growth in amount of data and the increase
in the frequency of decisions to be made, financial decision
making is quickly becoming one of the most data intensive
fields of interest [1], [2]. Both researchers and practitioners
resort to quantitative and computational methods to analyze
financial data, and thus enhance the decision making process,
traditionally done by experts [3]. More specifically, the issues
of asset allocation and portfolio optimization [4] remain some
of the critical points where computational methods are needed
in order to scale the traditional financial methods to the global
universe of a large number of assets and a high frequency of
decision making [5].

Here we consider the method of statistical arbitrage — a well-
known algorithmic trading approach based on inefficiencies
between asset prices [6], [7]. Classical statistical arbitrage
methods take into account pairs of assets (e.g. stocks, bonds,
commodities, etc.) where prices behave similarly to each other
during a certain period of time [8]. Similarity is measured
by cointegration, correlation, or some other relevant measure.
Among those pairs, method finds a moment in time when those
assets’ prices overcome the interval that was statistically de-
termined as highly confident. When such opportunities present
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themselves, one can take advantage of them by predicting that
prices will likely return once again to the confident interval
in the future, and trade in accordance with this prediction.
This approach was initially defined on pairs of assets, and the
problem of expanding it to larger sets of assets remained an
open issue.

In this paper, we propose a new method based on predictions
obtained by the statistical arbitrage method, using statistical
measures as a proxy for describing the preference relations
between pairs of assets. The idea of this method is to create
a generalization of statistical arbitrage that is more robust and
performs better when working with a larger number of assets
by trying to take into account interaction of multiple assets [9].
This new method supplements the statistical arbitrage method
by introducing a preference relation graph that has the potential
to grasp total interaction among all the assets, whereas the
former method only observes relations of individual pairs of
assets. A graph is formed based on the estimated pairwise
relations between a selection of assets. This graph imposes
a preference relation among the assets that are included in
it. Using the potential method [10], a multi-criteria decision
making approach, we sort the considered assets by preference
and include them into the portfolio accordingly.

We test the proposed method on 203 stocks which were
constituent members of the S&P 500 market index from 1980
to 2004. Our results demonstrate the validity of the proposed
approach and indicate that portfolios yielding high Sharpe ratio
values can be obtained using the proposed method.

II. CONCEPTS AND METHODS

A. Preference relation and utility function

Let Ω be any set of entities. Preference relation � defined
over Ω × Ω is a strict weak ordering that describes the way
one entity is preferred over another. This relation is specific in
that it is (∀x, y, z ∈ Ω):
• irreflexive: every entity x can not be preferred over itself,
• asymmetrical: if x is preferred over y, then y is not

preferred over x,
• transitive: if x is preferred over y, and y is preferred over
z, then x is also preferred over z,

• transitive in incomparability (noting that x and y may be
incomparable, i.e. neither x is preferred over y, nor y is
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Fig. 1. An example of a preference flow graph. Preference is inscribed in
each node, and preference flows are shown on edges.

preferred over x): if x is incomparable with y, and y is
incomparable with z, then x is also incomparable with z.

We naturally assume this kind of relation when describing
preferences among the assets. Deciding that one asset is more
preferable than the other is an easier task than assigning a
measure of preference to each asset directly, especially when
dealing with a larger numbers of assets. However, the latter is
more useful than the former; thus it is desirable to find a way
of sorting assets in the order of preference.

A utility function U : Ω → R is a function that maps entities
to real numbers, so that the ordering of the mapping reflects
the ordering of the entities according to their preference, i.e.
∀x, y ∈ Ω, x � y ⇔ U (x) > U (y). One such mapping
is obtained using the potential method that is described later
in this paper. In addition to ordering the entities, the utility
function also quantifies the relation by introducing the intensity
of preference, i.e. when x � y, then x is more preferable than y
by U (x)−U (y). Hence it is more informative when it comes
to decision making.

B. Preference flow graph

A preference flow graph is a weighted directed acyclical
graph, whose nodes represent entities, edges represent prefer-
ence for one entity over another, and edge weights correspond
to the intensity of the preference. If an edge between nodes
is missing, it is considered that neither entity is preferred over
another (incomparability of entities). The graph as a whole
describes preference flow among the entities. An example of a
preference flow graph is shown in Fig. 1.

The construction of the graph is based on a statistical
arbitrage method. A directed edge from node i to node j with
weight wi,j exists in the graph if and only if assets represented
by nodes i and j have demonstrated similar behavior during a
considered lookback period, but have suddenly diverged at the

moment, as determined by statistical measures. The weight wi,j
corresponds to the magnitude of this divergence. A detailed
description of used statistical measures the procedure is given
later in III-A.

Connections in this graph impose a preference relation, and
it already satisfies two following properties: neither node is
in relation with itself (irreflexivity), and multiple connections
are not allowed between any two nodes (implies asymmetry).
However, problems arise with the aforementioned properties
of transitivity, and transitivity in incomparability, which may
not hold for an arbitrarily constructed instance of the graph
[10]. This imposed preference relation should preferably be in
compliance with all the aforementioned properties, but when it
comes to larger number of entities, it may become infeasible to
construct a graph of such qualities directly. Instead of aiming at
a consistent preference relation, we use a consistency measure
that describes similarity between the original graph and its
nearest consistent reconstruction (i.e. a reconstruction which
imposes a consistent preference relation), and use it as an
additional parameter in decision making.

C. Potential method

From the obtained preference flow graph it is possible to tell
which pair of assets has the highest preference flow. However,
it is not yet possible to directly tell which are the most or
least preferred assets, or obtain a measure of preference for
individual assets. To calculate preferences for each node in the
graph, we use the potential method [10]. The potential of a
node corresponds to the difference of amount of flow directed
towards and from the node.

For the observed graph G, let there be a total of N nodes,
and maximum of E =

(
N
2

)
edges (in case of a complete graph).

If G is not complete, we complete it by adding edges to it with
weight 0 (the direction is irrelevant), thus forming a complete
graph G with E edges. Let B ∈ RE×N be the incidence matrix
of G. Let f ∈ RE be a vector containing edge weights (i.e.
preference flows). Order of the edges must be the same as order
of the edges in B. As mentioned before, in place of missing
edges we simply put 0. Let φ ∈ RN be the vector containing
potentials of each node, in order that is the same as order of
the nodes in B. Now, if G was consistent, then B, φ, and f
would satisfy the equation

Bφ = f . (1)

The equation (1) states that the difference between the potential
of any two nodes should result in the weight of the edge
between them. This is only possible for consistent graphs, and
most of the time the obtained preference flow graphs will be
inconsistent. In that case we try to find an approximate solution
φ∗ that minimizes the square error:

φ∗ = argmin
φ

{
‖Bφ− f‖2

}
⇓

∂ ‖Bφ∗ − f‖2

∂φ∗
= 0. (2)



Solving (2) via commonly used techniques of matrix calculus
results in the following equation:

B>Bφ∗ = B>f . (3)

The equation (3) determines φ∗ up to a constant (i.e. solution
has one degree of freedom), so the following constraint is also
included:

j>φ∗ = 0, (4)

where j is vector of ones of the same dimension as φ∗. This
ensures a unique solution for which total amounts of positive
and negative potential will be equal. Joining the previous two
equations together by adding (4) to each row in (3) results in:

B>Bφ∗ + Jφ∗ = B>f[
B>B + J

]
φ∗ = B>f , (5)

where J is a matrix of ones of the same dimensions as B>B.
Finally, solving (5) for φ∗ gives:

φ∗ =
[
B>B + J

]−1
B>f . (6)

Furthermore, the term
[
B>B + J

]−1
in (6) may be simplified

to 1
N I due to B>B being the Laplace matrix of a complete

graph; thus (6) can be simplified futher into

φ∗ =
1

N
B>f , (7)

to get a more computationally optimal expression.
Afterwards, we can calculate the consistent reconstruction

f∗ of preference flow by simply plugging back φ∗ into (1):

f∗ = Bφ∗. (8)

The reconstructed preference flow f∗ compared to the original
preference flow f may contain some new edges, lose some
old edges, or both. In addition, B, φ∗, and f∗ now describe a
consistent graph G∗. It is now possible to define a consistency
measure κ, as follows:

κ =
‖f∗‖
‖f‖

. (9)

Equation (9) represents the cosine of the angle between f and
f∗ in the column space of matrix B. The consistency measure
κ describes how consistent graph G is compared to the G∗.
It ranges from 0 to 1, 0 meaning full inconsistency (virtually
unreachable), and 1 meaning full consistency.

III. ALGORITHM

We consider a total of N assets throughout a period of D
days. Let the price of asset i at the time step t be a(t)i , for
i ∈ [1, 2, . . . , N ] and t ∈ [0, 1, . . . , D − 1]. The log–prices
b
(t)
i , and log–price differences c(t)i,j between assets i and j are

obtained as follows:

b
(t)
i = log

(
a
(t)
i

)
(10)

c
(t)
i,j = b

(t)
i − b

(t)
j , (11)

0 100 200 300 400

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Fig. 2. Log price difference between a pair of assets (i, j) during a period
of 500 time steps. The dotted line represents the mean value, and the region
between two dashed lines represents the α – standard deviation range from
mean value, here α = 1; both are calculated on a rolling window of length T ,
here T = 120.

and rolling means m(t)
i,j and standard deviations d(t)i,j of log price

differences over the lookback period of size T are obtained as
follows:

m
(t)
i,j =

1

T

t−1∑
τ=t−T

c
(τ)
i,j (12)

d
(t)
i,j =

√√√√ 1

T

t−1∑
τ=t−T

(
c
(τ)
i,j −m

(t)
i,j

)2
. (13)

Note that in summation used in (12, 13) the time step t was
intentionally excluded, therefore summation goes only to t− 1.
We use these calculations as basis for creating a portfolio based
on preference relation and statistical arbitrage.

A. Preference flow graphs inference

Using the obtained c(t)i,j , m(t)
i,j , and d(t)i,j it is now possible to

create a graph of preference flow among assets for each time
step t. Considering one time step t, we find all such pairs of
assets (i, j) that satisfy:∣∣∣c(t)i,j −m(t)

i,j

∣∣∣ > α · d(t)i,j , (14)

i.e. current log–price difference is at least α deviations distant
from mean value of the past time window. An illustration is
shown in Fig. 2.

Afterwards, for each observed pair (i, j) that exceeds the
threshold we add into graph vertices i and j, with a weighed
edge of weight w(t)

i,j going from i to j. Weight w(t)
i,j is obtained

as:
w

(t)
i,j =

(
c
(t)
i,j −m

(t)
i,j

)/
d
(t)
i,j . (15)

Thus it is possible to create a graph of preference flow for
each time step t ∈ [T, T + 1, . . . , D − 1]. At some time steps
it is possible that the graph could be empty, if it is the case that
no pair (i, j) satisfies (14). Setting lower values for parameter α
yields denser graphs, and setting α = 0 always yields complete
graphs.



B. Asset selection from preference flow graphs

We obtain the preference for each individual asset via the
potential method, as described earlier in II-C. By obtaining the
measure of preference for each asset it is possible to pick assets
for the portfolio. The most preferred assets should be bought
while the least preferred should be short-sold if possible.

Let φ(t) =
[
φ
(t)
1 φ

(t)
2 . . . φ

(t)
N

]
denote the vector of

preferences of assets at time step t and let φ(t)i denote the
preference for asset i at time step t. When selecting assets
for the portfolio we take into consideration the consistency
measure κ as well. Lower values of κ suggest that we should
diversify our portfolio by including some more assets in the
order of preference, while higher values suggest that it is safe
to invest in smaller number of assets. Portfolio diversification
might be seen as a strategy for protection from fundamental
risks, e.g. risk of asset default.

The bound on the assets which will be taken into portfolio
is proportional to the consistency measure κ. Depending on
the nature of assets we may tune the consistency measure κ to
be more or less inclined to diversification by transforming it
to κ′:

κ′ = a+ (1− a)κb, (16)

where a ∈ [0, 1], b ∈ R+. For default values of a = 0, b = 1,
κ′ equals κ.

For determining the assets that should be held in the portfolio
at time step t, we find such assets i for which holds:

φ
(t)
i ≥ κ

′ · Φ, (17)

where Φ is maxj {|φj |}. Likewise, for short-selling we choose
those assets i for which holds:

φ
(t)
i ≤ −κ

′ · Φ. (18)

For a = 0 diversification completely depends on the consistency
κ, while for a = 1 only the most preferred asset is held in
the portfolio (no diversification). On the other hand, when 0 <
b < 1, the algorithm is less inclined to diversify even when

consistency is low, and when b > 1, algorithm is more inclined
to diversify even when consistency is high.

IV. RESULTS

We test the proposed method on a set of 203 stocks that were
contiguously included in S&P 500 index from Jan 1st, 1980
until Dec 31st, 2003, which includes 6261 trading days. From
203 stocks a total of 20503 pairs were probed for statistical
arbitrage at each time step. Transaction costs of 0.10% were
also included in the analysis. The summary of results for various
parameters is shown in Table I. The annual Sharpe ratio [11] is
defined as: S = µr

σr
— the ratio between annual mean returns

and volatilities of the considered portfolio. For each individual
trade we analyze the profit by evaluating the amount of gain,
loss and net profit, as well as gain/loss ratio. We measure the
algorithm accuracy as the ratio of trades resulting in gain to the
total number of trades, and we calculate the average turnover
ratio as the average percetnage of the portfolio which needs to
be rebalanced at each point. Finally, we include the transaction
costs and recalculate the portfolio gains. The highest profits and
Sharpe ratios have been achieved when using α = 0. The naive
“Buy & Hold” algorithm was used as a baseline algorithm for
comparison. “Buy & Hold” simply holds equal fractions of all
available stocks from the beggining to the end. Comparison of
methods is shown in Fig. 3.

These results indicate that the proposed method does indeed
yield portfolios which are able to perform multi-criteria statis-
tical arbitrage on a large set of assets. In addition, we report
that the method adapts to the inconsistence of preferences by
picking variable number of assets into the portfolio. This speaks
to the resilience of the algorithm to various market conditions,
also demonstrated by the obtained portfolio performance. An-
other interesting finding is the fact that the average gain is
much higher than the average loss, meaning that the algorithm
errors cost less than the gains obtained when the algorithm
is correct. The method is shown to produce rational turnover
ratios, and the fact that the obtained Sharpe ratios remain high
despite transaction costs additionally affirms the validity of

TABLE I
RESULTS FOR T = 60, α = 0.

Parameter:
a 0.0 0.5 1.0

b 0.5 1.0 2.0 0.5 1.0 2.0 /

Annual return 0.95339 0.88967 0.84463 0.98336 0.95663 0.89704 1.00223
Annual volatility 0.77042 0.76595 0.74077 0.77905 0.77054 0.76660 0.78363
Annual Sharpe ratio 1.23750 1.16152 1.14020 1.26225 1.24150 1.17015 1.27896

Profit:
gain 89.27624 88.89440 88.32548 89.58775 89.29840 89.04414 89.55020
loss -58.37779 -59.03715 -58.41396 -58.24852 -58.32385 -59.02220 -58.05316
net profit 30.89846 29.85725 29.91152 31.33923 30.97456 30.02195 31.49704
positive to negative ratio 1.52928 1.50574 1.51206 1.53803 1.53108 1.50866 1.54256

Average accuracy 0.36485 0.39276 0.43413 0.34902 0.36458 0.39145 0.33241
Average turnover ratio 0.59976 0.64224 0.73597 0.57585 0.59947 0.64089 0.55112

Net profit w/ 0.1% transaction cost 23.46019 21.89215 20.78402 24.19757 23.53996 22.07361 24.66204
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Fig. 3. Performance of the portfolios constructed on 203 stocks from the S&P
500 index during 6261 working days, using the proposed algorithm without
transaction costs (blue), proposed algorithm with 0.1% transaction costs (green),
and the buy & hold strategy (black).

the approach. These findings suggest that the proposed method
produces consistent returns and may be feasible in a live market
setting.

V. CONCLUSION

In this paper we present a method for portfolio optimization
based on pairwise statistical arbitrage principles. The algorithm
works on pairs of assets, looking for those deviations which are
uncommon, and constructs a preference flow graph in order to
select the most preferred assets to be included in the portfolio.
The method has been tested on a contiguous subset of 203
shares from the S&P 500 market index, from 1980 to 2004. The
results suggest that the proposed method yields portfolios with
superb market performance, as indicated by the high Sharpe
and low turnover ratios. This demonstrates the applicability of
the propsed method for portfolio optimization on large sets of
financial assets.
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