Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 924991

Short-term power system hourly load forecasting using artificial neural networks


Holjevac, Ninoslav; Soares, Catarina; Kuzle, Igor
Short-term power system hourly load forecasting using artificial neural networks // Energija : časopis Hrvatske elektroprivrede, 66 (2017), 1; 241-254 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 924991 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Short-term power system hourly load forecasting using artificial neural networks

Autori
Holjevac, Ninoslav ; Soares, Catarina ; Kuzle, Igor

Izvornik
Energija : časopis Hrvatske elektroprivrede (0013-7448) 66 (2017), 1; 241-254

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Artificial neural networks ; Short-term load forecasting ; Electric power system operation and planning

Sažetak
Artificial neural networks (ANN) have been used for many application in various sectors. The learning property of an ANN algorithm in solving both linear and non-linear problems can be utilized and applied to different forecasting problems. In the power system operation load forecasting plays a key role in the process of operation and planning. This paper present the development of an ANN based short-term hourly load forecasting model applied to a real data from MIBEL – Iberian power market test case. The historical data for 2012 and 2013 ware used for a Multilayer Feed Forward ANN trained by Levenberg-Marquardt algorithm. The forecasted next day 24 hourly peak loads and hourly consumptions are generated based on the stationary output of the ANN with a performance measured by Mean Squared Error (MSE) and MAPE (Mean Absolute Percentage Error). The results have shown good alignment with the actual power system data and have shown proposed method is robust in forecasting

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Igor Kuzle (autor)

Avatar Url Ninoslav Holjevac (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada journalofenergy.com

Citiraj ovu publikaciju:

Holjevac, Ninoslav; Soares, Catarina; Kuzle, Igor
Short-term power system hourly load forecasting using artificial neural networks // Energija : časopis Hrvatske elektroprivrede, 66 (2017), 1; 241-254 (međunarodna recenzija, članak, znanstveni)
Holjevac, N., Soares, C. & Kuzle, I. (2017) Short-term power system hourly load forecasting using artificial neural networks. Energija : časopis Hrvatske elektroprivrede, 66 (1), 241-254.
@article{article, author = {Holjevac, Ninoslav and Soares, Catarina and Kuzle, Igor}, year = {2017}, pages = {241-254}, keywords = {Artificial neural networks, Short-term load forecasting, Electric power system operation and planning}, journal = {Energija : \v{c}asopis Hrvatske elektroprivrede}, volume = {66}, number = {1}, issn = {0013-7448}, title = {Short-term power system hourly load forecasting using artificial neural networks}, keyword = {Artificial neural networks, Short-term load forecasting, Electric power system operation and planning} }
@article{article, author = {Holjevac, Ninoslav and Soares, Catarina and Kuzle, Igor}, year = {2017}, pages = {241-254}, keywords = {Artificial neural networks, Short-term load forecasting, Electric power system operation and planning}, journal = {Energija : \v{c}asopis Hrvatske elektroprivrede}, volume = {66}, number = {1}, issn = {0013-7448}, title = {Short-term power system hourly load forecasting using artificial neural networks}, keyword = {Artificial neural networks, Short-term load forecasting, Electric power system operation and planning} }




Contrast
Increase Font
Decrease Font
Dyslexic Font