Pregled bibliografske jedinice broj: 924794
Detecting and Ranking Conceptual Links between Texts Using a Knowledge Base
Detecting and Ranking Conceptual Links between Texts Using a Knowledge Base // Proceedings of the 25th ACM International Conference on Information and Knowledge Management / Mukhopadhyay, Snehasis ; Zhai, ChengXiang (ur.).
Lahti: The Association for Computing Machinery (ACM), 2016. str. 2077-2080 doi:10.1145/2983323.2983913 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 924794 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Detecting and Ranking Conceptual Links between Texts Using a Knowledge Base
Autori
Tutek, Martin ; Glavaš, Goran ; Šnajder, Jan ; Milić-Frayling, Nataša ; Dalbelo Bašić, Bojana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 25th ACM International Conference on Information and Knowledge Management
/ Mukhopadhyay, Snehasis ; Zhai, ChengXiang - Lahti : The Association for Computing Machinery (ACM), 2016, 2077-2080
ISBN
978-1-4503-4073-1
Skup
International Conference on Information and Knowledge Management
Mjesto i datum
Indianapolis (IN), Sjedinjene Američke Države, 24.10.2016. - 28.10.2016
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Knowledge graphs, events in news, machine learning
Sažetak
Recent research has explored the use of Knowledge Bases (KBs) to represent documents as subgraphs of a KB concept graph and define metrics to characterize semantic relatedness of documents in terms of properties of the document concept graphs. However, none of the studies so far have examined to what degree such metrics capture a user-perceived relatedness of documents. Considering the users' explanations of how pairs of documents are related, the aim is to identify concepts in a KB graph that express the same notion of document relatedness. Our algorithm generates paths through the KB graph that originate from the terms in two documents. KB concepts where these paths intersect capture the semantic relatedness of the two starting terms and therefore the two documents. We consider how such intersecting concepts relate to the concepts in the users' explanations. The higher the users' concepts appear in the ranked list of intersecting concepts, the better the method in capturing the users' notion of document relatedness. Our experiments show that our approach outperforms a simpler graph method that uses properties of the concept nodes alone.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb