Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 922981

Soft sensors model optimization and application for the refinery real-time prediction of toluene content


Mohler, Ivan; Ujević Andrijić, Željka; Bolf, Nenad
Soft sensors model optimization and application for the refinery real-time prediction of toluene content // Chemical engineering communications, 205 (2018), 3; 411-421 doi:10.1080/00986445.2017.1399124 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 922981 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Soft sensors model optimization and application for the refinery real-time prediction of toluene content

Autori
Mohler, Ivan ; Ujević Andrijić, Željka ; Bolf, Nenad

Izvornik
Chemical engineering communications (0098-6445) 205 (2018), 3; 411-421

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Differential evolution ; Model regressor optimization ; Refinery aromatic process ; Soft sensors ; System identification

Sažetak
Industrial facilities nowadays show an increasing need for continuous measurements, monitoring and controlling many process variables. The on-line process analyzers, being the key indicators of process and product quality, are often unavailable or malfunction. This paper describes development of soft sensor models based on the real plant data that could replace an on-line analyzer when it is unavailable, or to monitor and diagnose an analyzer’s performance. Soft sensors for continuous toluene content estimation based on the real aromatic plant data are developed. The autoregressive model with exogenous inputs, output error, the nonlinear autoregressive model consisted of exogenous inputs and Hammerstein–Wiener models were developed. In case of complex real-plant processes a large number of model regressors and coefficients need to be optimized. To overcome an exhaustive trial-and-error procedure of optimal model regressor order determination, differential evolution optimization method is applied. In general, the proposed approach could be, of interest for the development of dynamic polynomial identification models. The performance of the models are validated on the real-plant data.

Izvorni jezik
Engleski

Znanstvena područja
Kemijsko inženjerstvo



POVEZANOST RADA


Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Profili:

Avatar Url Željka Ujević Andrijić (autor)

Avatar Url Ivan Mohler (autor)

Avatar Url Nenad Bolf (autor)

Poveznice na cjeloviti tekst rada:

doi www.tandfonline.com doi.org

Citiraj ovu publikaciju:

Mohler, Ivan; Ujević Andrijić, Željka; Bolf, Nenad
Soft sensors model optimization and application for the refinery real-time prediction of toluene content // Chemical engineering communications, 205 (2018), 3; 411-421 doi:10.1080/00986445.2017.1399124 (međunarodna recenzija, članak, znanstveni)
Mohler, I., Ujević Andrijić, Ž. & Bolf, N. (2018) Soft sensors model optimization and application for the refinery real-time prediction of toluene content. Chemical engineering communications, 205 (3), 411-421 doi:10.1080/00986445.2017.1399124.
@article{article, author = {Mohler, Ivan and Ujevi\'{c} Andriji\'{c}, \v{Z}eljka and Bolf, Nenad}, year = {2018}, pages = {411-421}, DOI = {10.1080/00986445.2017.1399124}, keywords = {Differential evolution, Model regressor optimization, Refinery aromatic process, Soft sensors, System identification}, journal = {Chemical engineering communications}, doi = {10.1080/00986445.2017.1399124}, volume = {205}, number = {3}, issn = {0098-6445}, title = {Soft sensors model optimization and application for the refinery real-time prediction of toluene content}, keyword = {Differential evolution, Model regressor optimization, Refinery aromatic process, Soft sensors, System identification} }
@article{article, author = {Mohler, Ivan and Ujevi\'{c} Andriji\'{c}, \v{Z}eljka and Bolf, Nenad}, year = {2018}, pages = {411-421}, DOI = {10.1080/00986445.2017.1399124}, keywords = {Differential evolution, Model regressor optimization, Refinery aromatic process, Soft sensors, System identification}, journal = {Chemical engineering communications}, doi = {10.1080/00986445.2017.1399124}, volume = {205}, number = {3}, issn = {0098-6445}, title = {Soft sensors model optimization and application for the refinery real-time prediction of toluene content}, keyword = {Differential evolution, Model regressor optimization, Refinery aromatic process, Soft sensors, System identification} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font