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Abstract

A three-dimensional micropolar elasticity is cast in terms of the rigorous vari-

ational formulation. The discrete approximation is based on hexahedral finite

element using the conventional Lagrange interpolation and enhanced with in-

compatible modes. The proposed element convergence is checked by performing

patch tests which are derived specifically for micropolar finite elements. The

element enhanced performance is also demonstrated by modelling two boundary

value problems with analytical solutions, both exhibiting the size-effect. The

analysed problems involve a cylindrical plate bending and pure torsion of cir-

cular cylinders, which were previously used in the experimental determination

of the micropolar material parameters. The numerical results are compared

against the analytical solution, and additionally against existing experiments

on a polymeric foam for the pure torsion problem. The enhancement due to in-

compatible modes provides the needed improvement of the element performance

in the bending test without negative effects in the pure-torsion test where in-

compatible modes are not needed. It is concluded that the proposed element is

highly suitable for the numerical validation of the experimental procedure.
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1. Introduction

Most of the materials are heterogeneous in general, with a specific mi-

crostructure that can be represented at a scale particular for the material itself.

When this scale is very small, these materials are considered as homogeneous.

For such materials (e.g. metals), any microstructure detail is averaged leading to5

a homogeneous continuum theory. Commonly used is Cauchy’s or classical the-

ory that is able to faithfully describe the material behaviour. However, when the

microstructure scale becomes significantly large compared to the overall scale,

assuming the homogenized material, representation based on the classical the-

ory fails. Typical examples are materials with granular, fibrous or lattice struc-10

tures that cannot be adequately modelled using the classical continuum theory.

Many newly developed engineering materials increasingly used in engineering,

such as fiber-reinforced composites, honeycomb or cellular structured materials

or modern polymers belong to the last category. Due to their heterogeneity,

such materials exhibit a so-called size-effect phenomenon, which manifests in15

increased stiffness of smaller specimens made of the same material, which is

not recognised in the classical continuum theory. Moreover, in regions of high

stress gradients, such as the neighbourhoods of holes, notches and cracks, the

stress concentration factor as predicted by the classical theory is higher than

that observed experimentally. Even more discrepancies between the classical20

continuum theory and the experimental testing may be observed in dynamics,

thermal analysis and fluid mechanics [1]. Due to such anomalies, an alterna-

tive continuum model to accurately describe the behaviour of such materials is

highly needed.

Different approaches are developed to study the multi-scale nature of the25

material deformation processes. One heading is the development of more gen-

eral theories taking into account additional effects consistent with the observed

behaviour of such heterogeneous materials. Those additional effects allowing

account of microstructure within the limits of continuum mechanics may be
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introduced by taking into account higher order derivatives of the field gradi-30

ents, such as the so-called couple-stress or higher-order strain-gradient theories,

or, the second approach, by introducing additional degrees of freedom, such as

microstretch or micromorphic continuum theory [2], to name only a few. One

of such theories which introduces additional degrees of freedom is the so-called

micropolar continuum theory analysed in this paper, usually attributed to the35

Cosserat brothers [3]. They enriched the Cauchy’s theory by adding to the

displacement field an independent microrotation field, representing the local ro-

tation of a material point. The detailed exposition of the historical development

of such theory can be found in [2], who named it the micropolar theory of elas-

ticity. The main goal of this work is to contribute to the further development of40

such a more general theory, by performing a detailed analysis of some important

micropolar boundary value problems.

The ability to include local rotation extends the modelling capabilities, and

allows us to take into account the intrinsic material length-scale. From a math-

ematical point of view, an isotropic micropolar material is characterized as a45

continuum in which rigid particles of infinitesimal size are uniformly distributed

in an elastic matrix. However, the additional capabilities come at a cost. In

order to describe such a material, even when assumed to be linear elastic, homo-

geneous and isotropic, it requires six independent material constants, in contrast

to only two such constants for the classical continuum. Moreover, the experi-50

mental determination of these materials parameters is much more complex, since

the experimental verification and their corresponding conceptualisation and in-

terpretation is far from straightforward. The work in [4] is the first attempt

to determine all six micropolar material constants by developing experimental

and analytical solutions to the boundary value problem, but without particular55

success in the experimental part since opposite trends between experiments and

analytical predictions have been observed. However, by subsequent refinement

of Gauthier’s and Jahsman’s proposed procedure [4], Lakes and his co-workers

give the most significant contribution to devising experimental procedures to de-

termine the micropolar material parameters in their analysis of bones [5, 6, 7],60
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polymeric foams [8, 9, 10, 11] and metal foams [12], based upon measuring the

size-effect. Such experimental procedure consists of subjecting a set of cylin-

drical material specimens of different geometry prepared on a very small scale

to bending and torsional loads and observing the variation of stiffness with

size. By choosing the best fit to the analytical curve for the particular load-65

ing mode, as given in [4], the material parameters are determined successfully.

As an alternative to the experiments performed by Lakes and his co-workers,

the micropolar parameter determination can be based on various homogenisa-

tion procedures which replaces a larger-scale composite structure, or assembly

of particles, by an effective micropolar continuum model. By assuming that a70

homogeneous Cosserat material is the best approximation of a heterogeneous

Cauchy material, the six material parameters of the micropolar continuum may

be determined more easily [13, 14, 15, 16]. Several recent works of Wheel et al.

[17, 18, 19] determined the material parameters of highly heterogeneous mate-

rials on a larger-scale by comparing the results of experiments and the finite75

element simulation.

However, the experimental verification of a micropolar material model still

remains a great challenge, since a unified procedure to determine the mate-

rial parameters of micropolar continuum is still lacking. We argue here that

the key to understanding and developing more precise experimental procedures80

lies in the comprehensive numerical analysis of the solution of the correspond-

ing boundary value problem. Such a comprehensive numerical analysis should

broaden the range of problems which may be solved and open up new possi-

bilities for the numerical simulation of experimental set-ups. Therefore, the

development of the finite elements of high quality is important for the future85

progress and understanding of the micropolar continuum theory.

The objective of this paper is to present one such element for 3D simula-

tions. More precisely, we propose a high-performance three-dimensional mi-

cropolar hexahedral finite element, using conventional Lagrange interpolation

enhanced with the so-called incompatible modes [20, 21]. The proposed element90

performance is tested against the analytical boundary value problems derived by
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Gauthier and Jahsman [4] and experiments performed by Lakes and co-workers

[5]-[12]. In the framework of the classical elasticity the incompatible displace-

ment modes are first added to the isoparametric elements (e.g. see [20], [21]).

The main benefit of incompatible modes in the classical continuum framework95

is to avoid shear locking, as shown already in early 1970s [22]. In bending of

isoparametric 4-node 2D or 8-node 3D finite elements, the absence of quadratic

polynomials in the displacement field approximation predicts the shear strain in

pure bending incorrectly. This is called the shear-locking effect [23]. Even with

higher-order elements producing better results in pure-bending tests, the maxi-100

mum possible reduction of computational cost is always a worthwhile goal. The

proposed solution is to enrich the displacement interpolation of the correspond-

ing element with quadratic displacement interpolation modes, requiring internal

element degrees of freedom and leading to incompatibility of the displacement

field. When first introduced into 2D quadrilateral isoparametric finite elements105

[22], the method was received with skepticism in the finite element method re-

search community, since the displacement compatibility between finite elements

was at that time considered to be absolutely mandatory [24]. Even though the

newly presented four-noded quadrilateral element produced results very close

to the exact solution, and could well compete against the 9-node finite ele-110

ment, a big effort was still needed to have the method accepted [25, 26]. The

use of the incompatible-mode method for low-order elements in both two- and

three-dimensional problems is nowadays common, leading to the most impres-

sive performance not only in bending, but also elsewhere, e.g. when modelling

cracking [27, 26] and two-phase materials [28].115

In the framework of micropolar elasticity, the idea of enhancing the displace-

ment field of standard finite element is already recognised in [29], where authors

analysed straight and curved beam problems subject to shear loading. Only 2D

problems have been analysed in [29] and the numerical results have not always

converged to the reference analytical solution. In the present work, the high per-120

formance of the presented finite element is demonstrated by successful analysis

of both 2D and 3D problems. Moreover, our ability to deliver the solution that
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can converge to reference values was confirmed for both bending and torsion.

2. Micropolar continuum model formulation

The fundamental relations of linear micropolar elasticity applied to a ho-125

mogeneous and isotropic material are outlined in this section. We consider a

continuous body B, of volume V and boundary surface S in the deformed state

under the influence of external actions consisting of distributed body force pv

and body moment mv and distributed surface force ps and surface moment ms.

By generalising the Cauchy stress principle (see [30]), at an internal material130

point X, with the position vector x, with respect to a chosen spatial frame

of reference at time t, we prove the existence of a second-order Cauchy stress

tensor σ(x, t) and an additional second-order couple-stress tensor µ(x, t) .

Equilibrium equations. By analysing the static equilibrium of a differential vol-

ume dV in the deformed state, we can obtain the force equilibrium equation

σ∇+ pv = 0, (1)

where ∇ is the differential operator nabla (e.g. see [26]), and the moment

equilibrium equation

µ∇+ a + mv = 0. (2)

In (2) above, a is twice the axial vector of the skew-symmetric part of the stress

tensor σa = 1
2 (σ − σT), i.e.

a = 2axial(σa) =
{
σ32 − σ23 −σ31 + σ13 σ21 − σ12

}T

, 2σa = â, (3)

where a superimposed hat on a vector field (·) denotes a skew-symmetric cross-

product operator such that (̂·)v = (·) × v for any 3D vector v. Equilibrium135

equations written using the Einstein summation convention on repeated indices

are thus equal to

σij,j + pvi = 0, µij,j − εijkσjk +mvi = 0, (4)
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where the first index denotes the direction of the stress or axis of the couple stress

component with respect to the coordinate base and the second index denotes

the direction of the surface normal. The comma denotes differentiation with140

respect to spatial coordinate and εijk denotes the permutation tensor (Levi-

Civita tensor).

By analysing the differential surface dS subject to surface loading, the fol-

lowing natural boundary conditions are obtained:

σ n = ps ⇔ σijnj = psi, µ n = ms ⇔ µijnj = msi, (5)

where n is the outward unit normal to the surface.

Kinematic equations. In relation to the classical continuum theory, in the mi-

cropolar continuum theory we have a displacement field u(x) and an additional

microrotation field ϕ(x), representing the local rotation of the point X which is

completely independent of the displacement field. Consequently, the microrota-

tion ϕ is also independent from the rotation part of the displacement gradient,

i.e. from the macrorotation ω of the classical continuum theory (see [30]). The

micropolar strain tensor ε is defined as

ε = grad u− ϕ̂ = u⊗∇− ϕ̂ ⇔ εij = ui,j + εijkϕk, (6)

The normal strains in the micropolar continuum theory ε11, ε22, ε33 are equal to

those in the classical continuum theory, which means that the microrotation ϕ

does not contribute to stretching or shortening of the generic fibre. The influence

of the microrotation is present only in shear strains εij , i, j = 1, 2, 3, i 6= j, which

are defined to be equal to the difference between the change of inclination of

a generic fibre during deformation and the microrotation ϕ. The independent

rotation field ϕ also gives rise to a corresponding micropolar curvature tensor

κ = grad ϕ = ϕ⊗∇ ⇔ κij = ϕi,j , (7)

where the diagonal terms represent torsional strains. We note that the so-called

couple-stress theory (see [31]) is a special case of the micropolar continuum the-145

ory where the microrotation vector ϕ is equal to the macrorotation vector ω.
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Thus, in the couple-stress theory, the curvature tensor involves second deriva-

tives of the displacement field. When these derivatives are neglected, the cur-

vature tensor also vanishes and the couple-stress theory reduces to the classical

continuum theory.150

Constitutive equations. In a homogeneous isotropic linear elastic micropolar

continuum, the second-order stress and strain tensors σ and ε are related via a

constant isotropic fourth-order constitutive tensor T such that in the component

form we have [32]

σij = Tijpqεpq, Tijpq = λδijδpq + µ(δipδjq + δiqδjp) + ν(δipδjq − δiqδjp), (8)

where λ and µ are the Lamé constants, ν is another material constant and δij

is the Kronecker symbol. The couple-stress tensor µ is related to the curvature

tensor κ in a completely analogous way, i.e.

σij = λεppδij +(µ+ν)εij +(µ−ν)εji, µij = ακppδij +(β+γ)κij +(β−γ)κji,

(9)

where α, β, γ are three additional material parameters. The following re-

strictions on the material parameters should hold in order to enforce positive

definiteness of the constitutive tensors: 3λ+ 2µ > 0, µ > 0, ν > 0, 3α+ 2β > 0,

β > 0 and γ > 0. Note that all the stress and strain tensors are in general

non-symmetric.155

These material parameters are related to a set of engineering (measurable)

parameters, via [33]:

λ =
2n G

1− 2n
, µ = G, ν =

G N2

1−N2
,

α =
2G l2t (1− ψ)

ψ
, β = G l2t , γ = G(4l2b − l2t ).

(10)

Parameter G represents the shear modulus, n is Poisson’s ratio, lt the charac-

teristic length for torsion and lb the characteristic length for bending. Char-

acteristic length variables quantify the influence of the microstructure on the

macro-behaviour of the material and have the dimension of length. Their values

are of an order of magnitude of material particle-, grain- or cell-size, depending160

8



on the material microstructure. Parameter N represents the coupling number

that is a dimensionless measure of the degree of coupling between the micro-

rotation vector ϕ and the macrorotation vector ω, with the restricted value

N ∈ 〈0, 1〉. Consequently, ν quantifies the degree of coupling between macro-

and microrotation effects. When N tends to the limit N = 1, parameter ν tends165

to infinity, which is the case of the so-called couple-stress elasticity [34]. Finally,

parameter ψ ∈ 〈0, 32 〉 represents the dimensionless polar ratio of rotation sensi-

tivity (a quantity which relates the torsional strains in a way analogous to that

in which Poisson’s ratio relates the normal strains).

3. Weak form of the boundary value problem in 3D micropolar elas-170

ticity

For constructing a numerical solution procedure of the boundary value prob-

lem, we abandon its strong (or differential) form in favour of the corresponding

weak (or integral) form. The displacement-type weak formulation is obtained

by means of the principle of virtual work stating that the difference between

virtual works of external and internal forces should vanish, i.e.

G(u,ϕ;u,ϕ) = Gint(u,ϕ;u,ϕ)−Gext(u,ϕ) = 0. (11)

The virtual work of internal and external forces can be expressed as

Gint(u,ϕ;u,ϕ) =
´
V

(ε : σ + κ : µ)dV,

Gext(u,ϕ) =
´
V

(u · pv +ϕ ·mv)dV +
´
S

(u · ps +ϕ ·ms)dS,
(12)

where u and ϕ are the virtual displacements and virtual microrotation vec-

tors and ε and κ are the corresponding tensors of virtual micropolar strains

and curvatures, respectively. In order to obtain the numerical solution of the

problem, the kinematic fields have to be approximated using chosen interpola-

tions. In general, the real and virtual kinematic fields interpolation are chosen

the same leading to uh = Nu de, ϕh = Nϕ de, uh = Nu d
e
, ϕh = Nϕ d

e
.

More precisely, Nu and Nϕ represent the matrices of interpolation functions for

the displacement and microrotation field, and de and d
e

represent the real and
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virtual vector of element nodal degrees of freedom, respectively. Superscript

h denotes the finite-dimensional approximation and e the element level. After

introducing the chosen interpolation of the kinematic fields and their virtual

counterparts into (11) we obtain the interpolated element internal and external

virtual works as

Gint,e(de;d
e
) = d

eT
Kede, Gext,e(d

e
) = d

eT
fe, (13)

where Ke and fe represent the element stiffness matrix and external force vector.

The global internal and external virtual works are obtained by assembly over

nelem as the total number of elements in the mesh, with A as the finite-element

assembly operator [26] as

Gint(d;d) =
nelem

A
e=1

Gint,e(de;d
e
) ≡ d

T
Kd, Gext(d) =

nelem

A
e=1

Gext,e(d
e
) ≡ d

T
f

(14)

with d and d being the global vectors of real and virtual displacements, K =
nelem

A
e=1

Ke and f =
nelem

A
e=1

fe the global stiffness matrix and external force vector.

For arbitrary values of virtual parameters, ∀ d, the approximated principle of

virtual work leads to the basic algebraic equations of the finite element method175

K d = f .

4. Lagrangian elements with incompatible modes interpolation

In this work two different interpolations are tested. Both interpolations

are applied on an isoparametric trilinear hexahedral finite element with eight

nodes and six degrees of freedom per node (three displacements ux, uy, uz and180

three microrotations ϕx, ϕy, ϕz) with the numbering convention as shown in

Figure 1. The first type is the conventional trilinear Lagrange interpolation

defined in the natural coordinate system, chosen for both displacement and

microrotation fields, and the corresponding finite element is called Hex8. The

second interpolation consists of the Lagrange interpolations for displacement185

and microrotation fields, but with the displacement interpolation additionally
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enriched by incompatible modes. The derived finite element is referred to as

Hex8IM.

Figure 1: Hexahedral finite element with eight nodes

For the element Hex8IM the real and virtual displacement field interpolations

are defined as

uh =
∑8
i=1Ni(ξ, η, ζ)uei +

∑3
i=1Mi(ξ, η, ζ)αei = Nud

e + Nenhα
e

uh =
∑8
i=1Ni(ξ, η, ζ)uei +

∑3
i=1Mi(ξ, η, ζ)αei = Nud

e
+ Nenhα

e,
(15)

where

Ni(ξ, η, ζ) =
1

8
(1+ξaξ)(1+ηaη)(1+ζaζ), ξa = ±1, ηa = ±1, ζa = ±1, i = 1, .., 8,

(16)

represent the Lagrange trilinear isoparametric shape functions [23], uei = 〈uxi uyi uzi〉T

is the vector of element nodal displacements at node i, and αei = 〈α1i α2i α3i〉T

is the vector of the element parameters for the incompatible shape functions

chosen as: M1 = 1 − ξ2, M2 = 1 − η2, and M3 = 1 − ζ2. From (15) we

can see that the displacement field interpolation consists of the conventional

(compatible) part Nud
e and the enhanced (incompatible) part Nenh α

e. In

the compatible part, defining the complete displacement field interpolation of

the Hex8 element, the vector of element nodal degrees of freedom is defined

as de = 〈de1 de2 . . . d
e
8〉, where dei = 〈uxi uyi uzi ϕxi ϕyi ϕzi〉T, i being the
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node number, and the matrix of Lagrange interpolation functions is defined as

Nu = [N1 0 . . . N8 0], with explicit form of the sub-matrix of Lagrange

interpolation functions as

Ni =


Ni 0 0

0 Ni 0

0 0 Ni

 , (17)

and 0 as a 3 × 3 zero-matrix. Similarly, in the enhanced part with αe =

〈αe1 αe2 αe3〉T as the element vector of additional degrees of freedom, the

matrix of incompatible shape functions is written as

Nenh =


M1 0 0 M2 0 0 M3 0 0

0 M1 0 0 M2 0 0 M3 0

0 0 M1 0 0 M2 0 0 M3

 (18)

The virtual fields uei , α
e
i , d

e
and αe are defined analogously.

The real and virtual microrotation fields for both Hex8 and Hex8IM are

interpolated by using only the standard Lagrange interpolation:

ϕh =

8∑
i=1

Ni(ξ, η, ζ)ϕei = Nϕ de, ϕh =

8∑
i=1

Ni(ξ, η, ζ) ϕei = Nϕ d
e
, (19)

where ϕei = 〈ϕxi ϕyi ϕzi〉T is the vector of nodal microrotations at node i and190

Nϕ = [0 N1. . . 0 N8].

It is important to note that the reference configuration of the isoparametric

element is still defined only with the compatible shape functions, i.e. the map-

ping between the natural coordinate system and the global coordinate system

is defined as xh =
∑8
i=1Ni(ξ, η, ζ) xei where xei = 〈xi yi zi〉T represents the195

vector of element nodal coordinates at node i.

By introducing the interpolation into the kinematic equations we obtain the

vector of interpolated micropolar strain field

εh = 〈ε11 ε12 ε13 ε21 ε22 ε23 ε31 ε32 ε33〉T =

8∑
i=1

Bui
dei +

8∑
i=1

Qid
e
i +

3∑
i=1

Giα
e
i

(20)
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and the vector of interpolated curvature field

κh = 〈κ11 κ12 κ13 κ21 κ22 κ23 κ31 κ32 κ33〉T =

8∑
i=1

Bϕi
dei , (21)

where matrices Bui
= [Bi 0] and Bϕi

= [0 Bi] represent the matrices of

global derivatives of the compatible shape functions, matrix Qi = [0 Qϕi ] is the

matrix of compatible shape functions defining the presence of microrotations in

the definition of micropolar strains, matrix Gi is the matrix of global derivatives200

of incompatible shape functions and 0 is a 9 × 3 zero matrix, where the sub-

matrices are defined as

Bi =



∂Ni

∂x 0 0

∂Ni

∂y 0 0

∂Ni

∂z 0 0

0 ∂Ni

∂x 0

0 ∂Ni

∂y 0

0 ∂Ni

∂z 0

0 0 ∂Ni

∂x

0 0 ∂Ni

∂y

0 0 ∂Ni

∂z



, Qϕi
=



0 0 0

0 0 Ni

0 −Ni 0

0 0 −Ni
0 0 0

Ni 0 0

0 Ni 0

−Ni 0 0

0 0 0



, Gi =



∂Mi

∂x 0 0

∂Mi

∂y 0 0

∂Mi

∂z 0 0

0 ∂Mi

∂x 0

0 ∂Mi

∂y 0

0 ∂Mi

∂z 0

0 0 ∂Mi

∂x

0 0 ∂Mi

∂y

0 0 ∂Mi

∂z



.

(22)

The global derivatives of compatible and incompatible shape functions are given

by the usual chain rule expressions using the Jacobian matrix J =
∂(x, y, z)

∂(ξ, η, ζ)
[23],

i.e.205


∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

 =


∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z


︸ ︷︷ ︸

J−1


∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

 ,


∂Mi

∂x

∂Mi

∂y

∂Mi

∂z

 =


∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z


︸ ︷︷ ︸

J−1


∂Mi

∂ξ

∂Mi

∂η

∂Mi

∂ζ


(23)

Before proceeding to the derivation of the element stiffness matrix, we have

to take into account the finite element convergence criteria which states that
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any enhancement beyond the standard definition of the strain field has to vanish

for a state of constant strain. In other words, any enhanced strain field must

satisfy the stress orthogonality condition [26]. When enhancing the conventional

interpolation functions, the condition which has to be satisfied when performing

a patch test of order n, is that all the enhancement of order (n + 1) has to

vanish. By imposing the requirement that the strain energy associated with the

incompatible modes under the state of constant stress has to vanish we obtain

the following equation [20]:

1

2
σT

ˆ
V e

Gi dVα
e = 0 ⇒

ˆ
V e

Gi dV = 0, (24)

where V e is the element volume and σ = 〈σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33〉T

is the element stress vector. This can be satisfied by adding a constant correction

matrix Gci to the matrix Gi, i.e. G̃i = Gi + Gci such that

ˆ
V e

Gi dV =

ˆ
V e

(Gci + Gi) dV = 0 (25)

which, by the fact that Gci is constant, leads to the following modification of

matrix Gi [20]:

G̃i = Gi −
1

V e

ˆ
V e

Gi dV. (26)

By introducing the interpolation of the kinematic fields into the weak for-

mulation we obtain a system of two equations defined at the element level, i.e.

〈
d
eT

αe
T

〉Ke Fe
T

Fe He

de

αe


 =

fe

0

 , (27)

where the obtained matrices are equal to

Ke =

ˆ
V e

( (
Bu

T + Qϕ
T
)
C1 (Bu + Qϕ) + Bϕ

TC2Bϕ

)
dV, (28)

Fe =

ˆ
V e

G̃TC1 (Bu + Qϕ) dV, (29)

He =

ˆ
V e

G̃TC1G̃ dV, (30)
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where Bu = [Bu1 Bu2 . . . Bu8 ]T, Qϕ = [Qϕ1 Qϕ2 . . . Qϕ8 ], Bϕ =

[Bϕ1
Bϕ2

. . . Bϕ8
]T, G̃ = [G̃1 G̃2 G̃3]T, and C1 and C2 are 9 × 9

constitutive matrices defined as

C1 =



(λ+ 2µ) 0 0 0 λ 0 0 0 λ

0 (µ+ ν) 0 (µ− ν) 0 0 0 0 0

0 0 (µ+ ν) 0 0 0 (µ− ν) 0 0

0 (µ− ν) 0 (µ+ ν) 0 0 0 0 0

λ 0 0 0 (λ+ 2µ) 0 0 0 λ

0 0 0 0 0 (µ+ ν) 0 (µ− ν) 0

0 0 (µ− ν) 0 0 0 (µ+ ν) 0 0

0 0 0 0 0 (µ− ν) 0 (µ+ ν) 0

λ 0 0 0 λ 0 0 0 (λ+ 2µ)



,

(31)

with a corresponding result for C2 in which α, β, γ replace λ, µ, ν. In order to

eliminate the presence of unknown incompatible-mode parameters αe, we have

to perform the so-called static condensation [25]. The static condensation is

accomplished by first expressing from the second equation αe = −He−1

Fe de

and then introducing it into the first equation. Consequently, we obtain the

reduced form of the element stiffness matrix

K̃e = Ke − Fe
T

He−1

Fe. (32)

From this point on, we can proceed towards the standard finite element assembly

accounting for all element contributions, i.e.

K d = f ⇒ d; K =
nelem

A
e=1

K̃e; f =
nelem

A
e=1

fe. (33)

Having the nodal displacement values obtained, we can recover the correspond-

ing element displacements de through the connectivity matrix d = Lede which

allows to obtain the incompatible mode parameters αe = −He−1

Fe de and re-

cover the micropolar strains εh in (20). Stresses σh in Gauss points are then210

obtained from the constitutive equations. The curvatures κh are obtained in

a conventional manner, directly from the element displacements, as shown in
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equation (21) and again, using the constitutive equation, we obtain the couple-

stresses in Gauss points µh.

5. Numerical examples215

In this section the performance of the conventional eight-node hexahedral

micropolar finite element Hex8 and the enhanced element with incompatible

modes Hex8IM is tested in several numerical examples. In the first example

(Section 5.1), the finite-element verification is performed through the so-called

patch test [23] on a regular mesh, which represents a standard method for test-220

ing the finite element convergence. In the second example (Section 5.2) a set

of displacement patch tests for a micropolar continuum proposed in [35] are

generalised to 3D and the elements are tested on an irregular mesh. The finite

elements are also tested on two boundary value problems that are important for

the experimental determination of the micropolar material parameters, show-225

ing the size-effect phenomenon. In Section 5.3, the cylindrical bending of a

cantilever beam (also referred to as the higher-order patch test) is analysed

and compared to the analytical solution [4]. Finally, in the the last numerical

example, presented in Section 5.4, an axisymmetric boundary-value problem

consisting of a solid cylinder subject to torsion in two different configurations230

(two sets of material parameters) is analysed. In the second configuration, the

obtained numerical results are compared against the experimental results given

in [10].

5.1. Force patch test

We perform the force patch test [23] on a cantilever beam subject to pure235

tension, as shown in Figure 2, and check if for an arbitrary number of finite

elements in the mesh the exact solution for the state of constant stress is re-

turned. The geometry of the cantilever beam is chosen as L = 5 m, h = 2 m,

b = 1 m. The free-end of the cantilever beam is subjected to constant axial

distributed loading py = 10 N/m2, leading to a constant stress field. The con-240

stant distributed surface loading is applied through corresponding concentrated
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nodal forces obtained by integration, which, for a single-element mesh gives

F =
1

4
pybh, as shown in Figure 2. At the left-hand end of the cantilever all the

displacements in the longitudinal direction are fixed, i.e. uy(x, 0, z) = 0, while

uz(x, 0, 0) = 0, and ux(0, 0, 0) = 0 for x ∈ [0, b], z ∈ [0, h]. The patch test is245

performed on two regular meshes by equally increasing the number of uniform

elements in the x, y and z direction for the chosen material parameters µ = 1000

N/mm2, λ = 1000 N/mm2, ν = 500 N/mm2, α = 20 N, β = 20 N and γ = 20

N, where the boundary conditions and external loading are correspondingly

defined.250

Figure 2: Cantilever beam subject to constant distributed axial load

It is observed that, even without the matrix modification defined in (26), for

a regular mesh the micropolar trilinear hexahedral element with incompatible

modes reproduces the analytical results to the highest computer accuracy, which

ensures that the element will converge to the exact solution when refining the

mesh.255

5.2. Displacement patch tests

According to Providas [35] the patch test for micropolar finite elements

should consist of a set of three separate tests. In this work, the tests given in [35]

for 2D are generalised to 3D and performed on a cuboid domain with length L =

0.24, height h = 0.12, width b = 0.06 and the internal nodes with the following260

co-ordinates: 1 = (0.04, 0.04, 0.02), 2 = (0.04, 0.18, 0.03), 3 = (0.02, 0.18, 0.03),

4 = (0.02, 0.04, 0.02), 5 = (0.04, 0.08, 0.08), 6 = (0.04, 0.16, 0.08), 7 = (0.02, 0.16, 0.08)
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and 8 = (0.02, 0.08, 0.08). The domain is discretised with 7 arbitrarily distorted

hexahedral finite-elements as shown in Figure 3. It is important to note that

the generalisation of Providas’ tests to 3D is not unique and, in this work one265

possible generalisation of it is presented. The material parameters used are the

same as defined in the force patch test.

x

y

z

1
2

3
4

7
6

8
5

L

h

b

Figure 3: Finite element mesh for the displacement patch test

The patch tests are performed by imposing the displacements and microro-

tations on the external nodes, while the volume loading (if any) is imposed in

the interior of the domain. The element passes a patch test if the internal nodes270

are capable of reproducing the analytical solution imposed by the boundary

conditions.

The first test is the standard patch test of the finite elements in the classical

continuum theory, whereby imposing linearly varying displacement and constant

microrotation fields via appropriate boundary conditions without any volume

and surface loading we obtain the state of constant symmetric stress and strain.

The kinematic fields are defined as follows:

ux = 10−3(x+ 0.5y + z), uy = 10−3(x+ y + 0.5z), uz = 10−3(0.5x+ y + z),

ϕx = ϕy = ϕz = 0.25 · 10−3,

(34)
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leading to the following theoretical solution:

σxx = σyy = σzz = 5.0, σxy = σyx = σyz = σzy = σxz = σzx = 1.5,

εxx = εyy = εzz = 10−3, εxy = εyx = εyz = εzy = εxz = εzx = 0.75 · 10−3,

(35)

with all the couple-stress and curvature components equal to zero.

The second test describes the state of constant non-symmetric shear stresses

and strains, for which a constant body moment is needed in order to preserve

equilibrium. The kinematic fields and body moments are defined as follows:

ux = 10−3(x+ 0.5y + z), uy = 10−3(x+ y + 0.5z), uz = 10−3(0.5x+ y + z),

ϕx = ϕy = ϕz = 0.75 · 10−3, mvx = mvy = mvz = 1.0

(36)

giving the following theoretical solution

σxx = σyy = σzz = 5.0, σxz = σyx = σzy = 1.0, σzx = σxy = σyz = 2.0,

εxx = εyy = εzz = 10−3, εxz = εyx = εzy = 0.25 · 10−3, εzx = εxy = εyz = 1.25 · 10−3,

(37)

with all the couple-stress and curvature components again equal to zero. The

third test describes the state of constant curvature, whereby imposing linearly

varying displacement, microrotation and body-moment fields as well as a con-

stant body-force field we obtain linearly varying stresses and constant couple-

stresses. The input is defined as:

ux = 10−3(x+ 0.5y + z), uy = 10−3(x+ y + 0.5z), uz = 10−3(0.5x+ y + z),

ϕx = ϕy = ϕz = 10−3(0.25 + (x− y − z)), pvx = 0, pvy = 2, pvz = −2,

mvx = mvy = mvz = 2(x− y − z).
(38)
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giving the following theoretical solution

σxx = σyy = σzz = 5.0, σxz = σyx = σzy = 1.5− (x− y − z),

σzx = σxy = σyz = 1.5 + (x− y − z), εxx = εyy = εzz = 10−3,

εxz = εyx = εzy = 10−3(0.75− (x− y − z)),

εzx = εxy = εyz = 10−3(0.75 + (x− y − z)),

µxx = 0.02, µyy = µzz = −0.06, µxy = µxz = µxy = µyz = µzy = −0.04,

µyx = µzy = 0.04, κxx = κyx = κzx = 10−3,

κyy = κzz = κxy = κxz = κyz = κzy = −10−3.

(39)

Providas considers the third patch test to be a necessary condition for finite-

element convergence even though in this test the shear stresses and strains are275

linearly varying. However, according to [23], satisfaction of a patch test in

which stress distribution is not constant is not considered to be necessary for

convergence and, for this reason, we treat this test as a higher-order patch test,

analogous to a pure bending test.

Table 1: Results for Patch test 3 [35] using the Hex8IM element

ux × 10−4 uy × 10−4 uz × 10−4 ϕx × 10−4 σxx µxx µxy

0.604 0.699 0.698 2.102 5.013 0.019 -0.039

Exact 0.600 0.700 0.700 2.100 5.000 0.020 -0.040

All three tests are first performed using the conventional Hex8 finite element280

and the obtained results correspond to the analytical solution to within the

computer accuracy. When analysing the first two tests using the enhanced

finite element Hex8IM it is observed that, for a distorted mesh analysed here,

the matrix modification as presented in (26) is necessary for the element to pass

the patch tests. When applying the matrix modification, both test are satisfied285

to within the computer accuracy. However, the third test is not satisfied either

way and the obtained results are presented in Table 1. Even though the third

patch test is not satisfied, we consider that Hex8IM satisfy the convergence

criteria since, as argued above, the finite element is able to reproduce exactly
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any state of constant stress.290

5.3. Pure bending – higher-order patch test

In an attempt to experimentally validate the micropolar material param-

eters, Gauthier and Jahsman [4] provided the analytical solution for stresses,

displacements and microrotations of a micropolar elastic plate subject to cylin-

drical bending. Timoshenko and Goodier [36] showed that in three-dimensional295

classical elasticity, a plate subject to edge moments Mz acting per unit length

will in general be deformed into an anticlastic shape. When transverse load is

applied, the bending deformation occurs not only in the longitudinal direction,

but also in the transverse direction, due to the Poisson’s effect. This is defined

as an anticlastic deformation.300

Figure 4: Bending of a plate

In the work of Gauthier and Jahsman [4] the plate bending problem of

length L, height h and thickness b, shown in Figure 4, is analysed by assuming

lateral boundary conditions which prevent anticlastic distortion, turning it into

cylindrical plane-strain bending problem. In other words, the only admissible

displacements are ux(x, y) and uy(x, y) and the only admissible microrotation305

is ϕz(x, y). Furthermore, Gauthier and Jahsman imposed the requirement that

the stresses and couple stresses are functions of y only, leading to a constant

stress distribution in the x direction, and a linearly varying distribution in the

y direction. Thus, the non-vanishing stresses are σxx, σzz, µzx and µxz.
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In the classical elasticity the only way to simulate a concentrated moment

Mz is by applying a linearly varying normal surface traction psx =
2y

h
p0x. In

the micropolar elasticity it is possible to model a concentrated moment by using

such a traction and/or a constant surface moment msz. Gauthier and Jahsman

have shown that in the micropolar elasticity, in order to obtain a state of pure

bending, the external moment Mz has to be applied using both tractions acting

on the same side, i.e. Mz =
´ h

2

−h
2

(y psx +msz)dy which are defined as

psx = σxx = − 1

1 + (1− n)δ

M

Wz

2y

h
, msz = µzx =

(1− n)δ

1 + (1− n)δ

M

A
, (40)

where D =
Eh3

12(1− n2)
represents the flexural rigidity, n is Poisson’s coefficient310

and δ = 24(lb/h)2. Therefore, an unique relationship between the external loads

is given as

msz

p0x
=

1

h

(λ+ 2µ)(β + γ)

2µ(λ+ µ)
≡ h

6
(1− n)δ. (41)

Obviously, for a material with vanishing characteristic length (lb → 0) the state

of pure bending may not be achieved if the surface moment loading is present,

while for a general micropolar material such a state is only possible when msz

and p0x are given in the proportion defined above resulting in Mz = p0xWz +

mszA with A = bh and Wz = bh2/6, (this is sometimes misinterpreted in the

literature where the external loading is applied using only one of the surface

tractions, e.g. [37]). The non-vanishing displacement and rotation fields are

ϕz =
1

1 + (1− n)δ

Mx

bD
, ux = − 1

1 + (1− n)δ

Mxy

bD
, (42)

uy =
1

2

1

1 + (1− n)δ

M

bD

(
x2 +

n

1− n
y2
)
. (43)

With respect to the classical-elasticity solution, all results are obviously multi-

plied by the factor
1

1 + (1− n)δ
leading to an increased bending stiffness, de-

pending on the value of the characteristic length lb. In other words, compared to315

the classical solution where the bending resistance is proportional to the height

of the specimen squared, the bending stiffness increases when the value of the
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material characteristic length lb is increased. The size-effect becomes signifi-

cant when the material characteristic length gets close to the beam’s height, i.e.

lb → h. On the other hand, as lb → 0, the result tends to the classical-elasticity320

solution.

In order to test the accuracy of the hexahedral element enhanced with in-

compatible modes, a cantilever beam of length L = 10 m, height h = 2 m and

thickness b = 1 m, shown in Figure 5, is submitted to cylindrical bending is

analysed. The problem is solved while varying the value of the characteristic325

length lb =

√
β + γ

G
, lb ∈ [0.0, 1.8] to capture the size-effect. The resultant

bending moment Mz = 20 Nm is applied through a linearly varying surface

loading and a constant surface moment loading in the defined proportion, as

defined in Table 2. The distributed loading is applied through corresponding

concentrated nodal forces and moments obtained by integration as defined by330

(11)-(13).

Table 2: External loading depending on the value of lb

lb β + γ p0 msz

0 0.0 30.000 000 000 000 000 0.000 000 000 000 000

0.1 24.0 28.708 133 971 291 860 0.430 622 009 569 378

0.3 216.0 21.352 313 167 259 780 2.882 562 277 580 070

0.6 864.0 11.450 381 679 389 320 6.183 206 106 870 228

1.2 3 456.0 4.010 695 187 165 778 8.663 101 604 278 070

1.8 7 776.0 1.925 545 571 245 185 9.358 151 476 251 610

The engineering material parameters are taken to be equal to E = 1500 N/m
2

and n = 0.25 which give the Lamé constants µ = 600 N/m2 and λ = 600 N/m2.

The parameter ν is chosen to be equal to ν = 200 N/m2, corresponding to

N = 0.5, but in this example it can have an arbitrary value, since the problem335

does not induce any non-symmetry. The remaining engineering parameters are

chosen as ψ = 0 and lt = 0.1, but, since they do not affect the solution, they
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can also have arbitrary values. Along the left-hand edge of the specimen all the

horizontal displacements and microrotations are restrained, i.e. ux(0, y, z) =

ϕx(0, y, z) = ϕy(0, y, z) = ϕz(0, y, z) = 0, for y ∈ [0, h] and z ∈ [0, b]. The340

vertical displacement at the left-hand edge is restrained only at the cantilever

axis, i.e. uy(0, h2 , z) = 0 for z ∈ [0, b]. Furthermore, the cylindrical bending of

the specimen is accomplished by additionally restraining the displacements in

the z direction along the whole cantilever, i.e. uz(x, y, z) = 0 for x ∈ [0, L],

y ∈ [0, h] and z ∈ [0, b].345

Figure 5: Cantilever beam subject to pure bending

The problem is solved using a mesh of two hexahedral elements as shown in

Figure 5. The results for the vertical displacement and microrotation uy and

ϕz at node P and the stress σxx at the Gauss point with coordinates GP =

(7.88675, 0.211325, 0.788675) obtained by Hex8 and Hex8IM are compared to

the analytical solution and shown in Table 3 and Figure 6.350
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Table 3: Results obtained using two hexahedral elements with eight nodes (Hex8 and

Hex8IM), 2 × 2 × 2 integration points, A = Analytical, N = Numerical

Element lb β + γ
A N A N A N

uy uy ϕz ϕz σxx,GP σxx,GP

Hex8
0.0 0.0 0.94063

0.06910
0.18750

0.01260
23.6603

1.9684

Hex8IM 0.94063 0.18750 23.6603

Hex8
0.1 24.0 0.90012

0.06892
0.17943

0.01269
22.6414

1.9503

Hex8IM 0.90012 0.17943 22.6414

Hex8
0.3 216.0 0.66948

0.06740
0.13345

0.01296
21.3523

1.8345

Hex8IM 0.66948 0.13345 21.3523

Hex8
0.6 864.0 0.35902

0.06203
0.07157

0.01261
11.4504

1.5997

Hex8IM 0.35902 0.07157 11.4504

Hex8
1.2 3456.0 0.12575

0.04624
0.02507

0.00977
3.1631

1.1436

Hex8IM 0.12575 0.02507 3.1631

Hex8
1.8 7776.0 0.06037

0.03234
0.01204

0.00691
1.5186

0.7904

Hex8IM 0.06037 0.01204 1.5186
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(a) Normalised end-node vertical displace-

ments

(b) Normalised end-node microrotation

(c) Normalised stresses in Gauss point

Figure 6: Cantilever beam subject to pure bending - results for Hex8 and Hex8IM

From the obtained results we can see that Hex8IM reproduce the analyti-

cal solution to within the computer accuracy, while the conventional element

with Lagrange interpolation Hex8 shows very poor results, especially for smaller

micropolar effects. The improvement due to the incompatible modes is highly

significant. Even with a very coarse mesh, the analytical solution of this higher-355

order patch test is precisely reproduced.

5.4. Micropolar solid cylinder under torsional load

An axisymmetric solid micropolar cylinder subject to pure torsion shown

in Figure 7 is analysed in this example. Gauthier and Jahsman derived the

analytical solution for a cylindrical specimen of height c and cross-section ra-360

dius a in the cylindrical coordinate system (r, θ, z) subject to torsional load
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[4]. The stresses and couple stresses are axisymmetric, and independent of z.

Furthermore, all non-vanishing variables are independent of the angle θ. By

further imposing a traction-free surface for r = a, prescribing the appropriate

resultant torque T on end surfaces z = 0 and z = c and taking into account the365

compatibility conditions, the analytical solution for stresses, displacements and

microrotations are obtained.

Figure 7: Solid cylinder in torsion

The first comprehensive numerical study of the problem is presented in [38],

where linear beam finite elements are tested for a range of micropolar material

parameters and the obtained results are compared to the analytical solution.

Furthermore, in [37] three-dimensional non-linear finite elements are developed

and their performance is tested by modelling this linear-elastic problem. A

good agreement between the numerical and analytical results is shown in both

references. However, as in the pure-bending case from Section 5.3, Gauthier and

Jahsman have shown that in the micropolar theory the state of axisymmetric

torsion of a circular cylinder can be achieved only by applying both a normal

surface traction psθ and a surface moment traction msz. In other words, to
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correctly model the problem in 3D, the external torque T should be applied as

ˆ
A

(r psθ +msz) dA = T, (44)

where A = r2π is the cylinder cross-section area, r is the variable in the ra-

dial direction, psθ is the tangential surface loading and msz is the moment

surface loading, as presented in [4]. The Neumann boundary condition is then

2π
´ a
0

(r2 σθz + r µzz) dr = T where a represents the cross-section radius and

σθz and µzz represent the stress and couple-stress components, respectively, with

the first index denoting the direction and the second index denoting the surface

normal. According to the analytical solution, both σθz and µzz are described

by the modified Bessel functions of the first kind In(r) [39] depending on r and

multiplied by constants of integration C1 and C9, as follows:

σθz = psθ = µ C1 r + 2νC9I1(pr), µzz = msz = α p C9 I0(pr) + 2βC1, (45)

where

p =

√
4ν

α+ 2β
, C9 =

T

2πa2

[
(
µa2

4β
+ 1.5) (α+ 2β) p I0(pa)− (

µa2

4β
+ 2)

2β

a
I1(pa)

]−1

and C1 = 2C9

(
α+ 2β

2β
p I0(pa)− 1

a
I1(pa)

)
, I0 and I1 being the modified

Bessel functions of the first kind. In other words, the distribution of the ex-

ternal loading is directly dependent on material parameters. The remaining

non-vanishing variables are σzθ, µrr, µθθ, uθ, ϕr and ϕz, where the displace-

ment and rotation fields are defined as

uθ = C1rz, ϕr = −C1r

2
+ C9I1(pr), ϕz = C1z, (46)

uθ being linear in r and z and ϕz linear in z as in the classical elasticity. Since

uz vanishes, no warping of surfaces is predicted.

In order to relate the classical and micropolar torsional problem, Gauthier

and Jahsman introduce a parameter Ω which defines the ratio of the micropolar

torsional rigidity to the classical torsional rigidity J =
Gπa4

2
. The ratio Ω is
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given as a function of engineering micropolar material parameters as:

Ω = 1 +
6

a2
l2t

1− 4
3ψχ

1− ψχ
, where χ =

I1(pa)

p a I0(pa)
and p =

√
2ψN2

l2t (1−N2)
.

(47)

It can be seen that for the limiting case lt → 0 the micropolar rigidity approaches370

the classical-elasticity value, since the ratio Ω→ 1. On the other hand, for the

limiting case ψ → 0, the ratio of micropolar rigidity approaches its maximum

value of Ω = 1 + 6(
lt
a

)2. In general, as the characteristic length approaches

the specimen radius, the micropolar rigidity increases and it can be as many as

seven times bigger than the classical rigidity.375

In the first part of this analysis the problem is solved using both Hex8 and

Hex8IM elements and the finite elements are tested by comparing the numerical

results against the analytical solution. The radius of the cylinder is taken as a =

0.2 mm, its height is c = 1 mm, and it is subjected to a resultant torque T = 1

Nmm. The chosen material parameters are µ = 10 500 N/mm2, λ = 157 500380

N/mm2, ν = 3 500 N/mm2, α = 0 N, β = 105 N and γ = −105 N , which

corresponds to the following engineering material parameters E = 30 843.8

N/mm2, n = 0.46875, N = 0.5, lb = 0 mm, lt = 0.1 mm, ψ = 1.0. Since α = 0,

the first term in (45)2 vanishes, i.e. msz becomes constant and we obtain the

external loading as shown in Figure 8.385
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(a) psθ for r ∈ [0, 1.0] (b) psθ for r ∈ [0, a]

(c) msz for r ∈ [0, a]

Figure 8: Distribution of the external loading

The surface traction is in general a non-linear function, as shown in Figure

8a. By extracting an initial part of that diagram (the detail in Figure 8a), we

can see that as r gets smaller, the shape of psθ approaches a linear function, as

blown up in Figure 8b. We can thus say that psθ is nearly linear for r ∈ [0, a]

and the resultant torque T is modelled as a linearly varying surface loading psθ390

where psθ(0, θ, c) = 0 N/mm2, psθ(r, θ, c) = 43.93046972 N/mm2, θ ∈ [0, 2π],

along with a constant distributed moment surface loading msz = 3.636829403

Nmm/mm2 shown in Figure 8c. Along the bottom side of the cylinder (z = 0)

all the displacements and microrotation ϕz are restrained. The problem is solved

for two different mesh densities, with 24 and 144 elements, as shown in Figures395

9a and 9b, respectively.
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(a) 24 elements (b) 144 elements (c) 1536 elements

Figure 9: Finite element mesh for the axisymmetric problem

The results obtained by Hex8 and Hex8IM for microrotation ϕz along the

cylinder axis z for r = a, and microrotation ϕr and displacement uθ at the upper

edge (z = c) along r are compared against the analytical solution, as shown in

Figures 10, 11 and 12.400

(a) 24 elements (b) 144 elements

Figure 10: Distribution of ϕz along z - results for Hex8 and Hex8IM for different mesh

densities
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(a) 24 elements (b) 144 elements

Figure 11: Distribution of ϕr along r - results for Hex8 and Hex8IM for different mesh densities

(a) 24 elements (b) 144 elements

Figure 12: Distribution of uθ along r for z = c - results for Hex8 and Hex8IM for different

mesh densities

We can see that both the Lagrange element Hex8 and the enhanced element

Hex8IM follow the analytical solution, and the numerical results are in good

agreement with the analytical solution even for a coarse mesh. The numeri-

cal analysis correctly predicts the linear distribution of the axial microrotation

component ϕz and the displacement component uθ. The results for the ra-405

dial microrotation component ϕr correctly follow the analytical trend. Because

of the presence of the characteristic length for torsion, the rigidity of this mi-

cropolar cylinder is 2.19 times larger than expected classically. However, the

enhancement due to incompatible modes does not improve the convergence rate.

As in the cylindrical bending example from Section 5.3, it is important to410

note that when the resultant moment T is modelled as a constant distributed
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moment surface loading T =
´
A
mszdA, or a linearly varying surface loading

T =
´
A
r psθdA only, the problem does not converge to the analytical solution.

Such a problem is analysed in [37].

In the second part of this numerical example the results of the numerical

analysis are compared with the experiments performed on a micropolar mate-

rial. The first successful attempt to experimentally validate all six micropolar

material parameters is conducted by Lakes [10] who has studied experimentally

the size-effect phenomenon, which is analytically predicted to occur in torsion

and bending [4]. His study consists of a set of quasi-static torsion and bending

tests performed on circular cylinder specimens and dynamic tests performed

on rectangular bars made of low-density polymeric foam. A characteristic di-

mension of the specimens is taken to be small enough for the size effect to be

observable, approaching the value of the material characteristic length (diam-

eters 13 mm, 20 mm, 28 mm, 35 mm and 40 mm with the length-to-diameter

ratio c/d = 5). The end-point torsional rotation θ is measured for a given torque

value and the resulting torsional rigidity is computed from J =
T c

θ
. The results

of
J

d2
against d2 obtained in this way in [10] are reproduced as dots in Figure

13. Analytically, on the other hand, the micropolar torsional rigidity follows

from (46)3 as

J =
T

C1
= πa2

(
µa2

2β
+ 3

)(α
2

+ β
)
pa I0(pa)−

(
µa2

2β
+ 4

)
β I1(pa)(

1 +
α

2β

)
pa I0(pa)− I1(pa)

(48)

with a = d
2 and p = 2

√
ν

α+2β , i.e. it is a function of the micropolar material415

parameters µ, ν , α, β and the cross-section radius a. Lakes has determined

these material parameters [10] by drawing the best-fit curve to the experimental

results, plotted using a solid line in Figure 13. The micropolar engineering

parameters G, lt, N , and ψ can then be obtained from equation (10). Lakes

refers to this approach as the method of size effects which makes use of the420

analytical solution [4] to describe the dependence of rigidity upon size. For

the case of the polymeric-foam specimens, the experimental data are fitted well
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by G = 0.6 N/mm2, ψ = 1.5, lt = 3.8 mm and N = 0.3. The remaining

engineering parameters are obtained from the tension and bending test and

are equal to n = 0.07 and lb = 5 mm. The corresponding continuum material425

parameters are µ = 0.6 N/mm2, λ = 0.0976744 N/mm2, ν = 0.0593407 N/mm2,

α = −5.776 N, β = 8.664 N and γ = 51.336 N. Let us note that here the

restriction on positive definiteness of the strain energy is not strictly satisfied

since 3α + 2β = 0. The dashed line in Figure 13 represents the theoretical

solution in the classical-elasticity theory,
J

d2
=

1

32
πGd2.430

Figure 13: Analytical, experimental and numerical representation of a size-effect behaviour

of a polymeric foam

In our numerical model proper external loading should be applied as argued

earlier. For the micropolar parameters given and a unit torque moment T = 1

Nmm, the distributed surface loading is represented by a quasi-linearly varying

surface loading psθ and, since ψ 6= 0, a non-constant distributed surface moment

loading msz. For the specimen with d = 13 mm, this is shown in Figure 14.435
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(a) psθ for r ∈ [0, 50.0] (b) psθ for r ∈ [0, a]

(c) msz for r ∈ [0, a]

Figure 14: Distribution of the external loading for the specimen with d = 13 mm

By analysing the definition of the resultant torque T from equation (44),

we can see from Figure 14 that for the specimen with diameter d = 13 mm

the contribution of the distributed surface load msz in the resultant unit torque

moment is 25.15 % while the contribution of psθ is 74.85 %. Furthermore, the

contribution of the constant part of the surface moment loading, having the440

value of msz = 0.001420949939 Nmm/mm2 is 18.86 % while the contribution

of the non-linear part of the surface moment loading is 6.28 %, all computed

using the Wolfram Mathematica package. Thus, the applied moment loading is

simplified to a sum of the constant part of the moment surface loading equal to

msz = 0.001420949939 Nmm/mm2 and a radially linear distribution obtaining445

the value of 0.001094166286 Nmm/mm2 for r = 0 and 0.0001634 Nmm/mm2 for

r = a. This distribution is shown in Figure 14c, represented by the straight line
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such that the areas under the analytical result (curved line) and the approxi-

mated result (straight line) are the same. Finally, the surface loading is applied

as approximately linearly varying to obtain the value psθ = 0.001745546194450

N/mm2 for r = a. The external loading for the remaining specimens is ap-

plied analogously, with the corresponding values obtained from (45). For the

remaining specimens, the contribution of the distributed surface load msz in the

resultant unit torque moment is decreasing by increasing the specimen diameter.

The problem is solved using Hex8IM elements for a fine mesh of 1536 ele-455

ments shown in Figure 9c), and the obtained numerical results for uθ at point

P (a, 0, c) for all specimens are introduced into the definition of the rigidity

J =
T a c

uθ
and plotted as diamonds in Figure 13. Even with the applied exter-

nal loading simplified as described, very good agreement with the experiments

conducted in [10] is achieved. Finally, in this example it is observed that, ac-460

cording to the experiments 13, the rigidity of the specimen with d = 13 mm is

approximately 60% higher, while the rigidity of the specimen with d = 20 mm

is approximately 16.5% higher than predicted by the classical-elasticity theory,

which is now also numerically proven.

6. Conclusion465

In the framework of the micropolar continuum theory, the performance of a

1st order hexahedral finite element enhanced with incompatible modes is anal-

ysed. The element is tested through four numerical examples and compared to

the conventional hexahedral element interpolated using standard Lagrange in-

terpolation. The motivation for the choice of the numerical examples is found in470

the available analytical solutions for various boundary value problems, which are

significant for the experimental verification of the micropolar material param-

eters. After assuring convergence of the enhanced finite element, a cylindrical

bending test is performed, where it is shown that the enhancement due to incom-

patible modes is significant. The resulting element is able to correctly reproduce475

the analytical solution, while the conventional element gives poor results. Fi-
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nally, pure torsion tests on circular cylinders of different geometry are performed

and the numerical analysis is put into the context of the experimental analysis

of a polymeric foam. It is shown that the finite element correctly describes the

size-effect phenomenon predicted analytically and observed experimentally. An480

excellent agreement between theory, experiments and the numerical analysis is

achieved. However, it is observed that the enhancement due to incompatible

modes does not contribute to a higher convergence rate in the pure torsion tests,

compared to the conventional finite element. The reason is simple, since in pure

torsion, the incompatible modes are not needed (contrary to the pure bending485

test), given linear displacement variation.

It can be concluded that Hex8IM highly reduces the computational cost

in the cylindrical bending problem and correctly predicts the size-effect phe-

nomenon in bending and torsion. Owing to that, the use of the presented

element as a part of the numerical validation of the experimental procedure can490

be considered to be highly efficient.
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