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aUniversity of Rijeka, Faculty of Civil Engineering, Croatia
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Abstract

Triangular and quadrilateral finite elements for linear micropolar continuum the-

ory are developed using linked interpolation. In order to satisfy convergence cri-

teria, the newly presented finite elements are modified using the Petrov-Galerkin

method in which different interpolation is used for the test and trial functions.

The elements are tested through four numerical examples consisting of a set of

patch tests, a cantilever beam in pure bending and a stress concentration prob-

lem and compared with the analytical solution and membrane micropolar finite

elements with standard Lagrangian interpolation. In the higher-order patch

test, the performance of the first-order element is visibly improved, significantly

so for the quadrilateral elements. All the presented elements also faithfully

reproduce the micropolar effects in the stress concentration analysis, but the

enhancement is here negligible with respect to standard Lagrangian elements.
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1. Introduction

The commonly used Cauchy’s continuum theory (the classical theory) in

most cases faithfully reproduces experimental results, in particular those carried

out on highly homogeneous construction materials such as steel and aluminium,

but discrepancies between theory and experiments are at times still observed [1].5

Carefully conducted experiments on materials with granular, fibrous or lattice

structure show that such materials cannot be adequately modelled using the

classical continuum theory. Commonly, in regions of high stress gradients, such

as the neighbourhoods of holes, notches and cracks, the stress concentration

factor as predicted by the classical theory is higher than that observed experi-10

mentally. In addition, it sometimes turns out to be independent of the size of

the imperfection that causes it, which also does not correspond to the exper-

imental observations. There exist specimens, e.g. rods made of foam subject

to torsion and bending, in which the size effect is clearly observed [2], which is

again inconsistent with the classical continuum theory. In addition, the classi-15

cal continuum theory strictly relies on symmetry of the Cauchy stress tensor,

which effectively makes it unable to accommodate arbitrary natural boundary

conditions. More discrepancies between the classical continuum theory and the

experimental testing may be observed in dynamics, thermal analysis and fluid

mechanics [1]. In an attempt to answer to such obvious anomalies, numerous20

alternative continuum theories have been developed, such as the micromorphic,

the microstretch, or the couple-stress continuum theory [3], to name only a

few. One of such theories is the so-called micropolar continuum theory, usually

attributed to the Cosserat brothers [4].

In the micropolar continuum theory, the interaction between material parti-25

cles is described by means of not only the stress vector field, but also the couple-

stress vector field. As a result, in addition to the stress tensor, an additional

couple-stress tensor is obtained, and both of these tensors are non-symmetric.

Consequently, in the micropolar continuum theory there exist two independent

kinematic fields, the displacement field and the so-called microrotation field,30
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which represents the local rotation of a material point, which is completely in-

dependent of the so-called macrorotation of the classical continuum theory (the

skew-symmetric part of the displacement gradient) [5]. By analysing the ge-

ometry of the deformation process, we further obtain two strain tensors, the

(micropolar) strain tensor, in which the microrotations are present, and the so-35

called curvature tensor as the microrotation gradient energy-conjugate to the

couple-stress tensor. Again, both of these tensors are non-symmetric. If we con-

sider a material which is linear elastic, homogeneous and isotropic, it necssarily

turns out to be described by six independent material constants, in contrast to

only two constants present in a linear elastic, homogeneous and isotropic clas-40

sical continuum. From a mathematical point of view, an isotropic micropolar

material is a continuum in which rigid particles of infinitesimal size are uni-

formly distributed in an elastic matrix and in which homogeneity and isotropy

are taken to be the macroproperties of the medium. The couple stresses phys-

ically originate from the bending and twisting moments transmitted between45

the rigid particles within the material, while the microrotation field describes

their rotation.

There are evidences (see e.g. [1], [6] and [7]) that the micropolar continuum

theory is in certain circumstances better suited to model the actual behaviour

of a material than the classical theory. Furthermore, using the micropolar the-50

ory it is possible to model the asymmetric stress-strain analysis, in contrast

to the classical theory. The importance of the material microstructure was

first recognised by Voigt [8] who suggested that the interaction between ma-

terial particles within a body should be assumed not only by a force vector,

but also by a moment vector and was the first one to obtain the stress tensor55

as a non-symmetric field. Two decades later, the Cosserat brothers extended

Voigt’s theory and introduced the theory of non-symmetric elasticity [4]. They

assumed that to each particle a rigid trihedron is attached, which can translate

and rotate during the deformation process. In this way, each material particle

had as many as six degrees of freedom: three displacement components and60

three rotation components. The theory was originally presented as a unified
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theory which brings together mechanics, optics, magnetism and electrodynam-

ics, but it did not provide the detail on the constitutive equations. The theory

had remained dormant for nearly half a century and was reopened by Günther

[9] who gave the fundamentals of the linear Cosserat continuum and discussed65

in detail the 1D, 2D and 3D models. Six years later, Truesdell and Toupin [10]

present their analysis of the so-called Cosserat pseudocontinuum (nowadays also

known as the couple-stress continuum), where the non-symmetric stress tensor

is obtained, but the deformation is determined by the displacement vector only,

using the macrorotation for the rotation field [3]. Further analysis of the linear70

Cosserat continuum was given by Schäfer [11], who focused only on the 2D case.

The latest extension of the Cosserat theory was provided by Eringen [12], who

included the body microinertia effects in dynamics and suggested the presently

used denomination of the theory as the micropolar theory of elasticity. Other

than Cosserat’s or micropolar, this theory is in the literature also referred to as75

the asymmetric theory of elasticity.

A possible reason why the micropolar continuum theory is not widely used

in the numerical analysis of structures may lie in the lack of reliable procedures

to determine the material parameters. Even though there exist numerous works

related to micropolar theory (see e.g. [13, 3, 14] among many others), relatively80

few experimental tests have been successfully conducted. An analytical and ex-

perimental procedure for determining the micropolar material constants is given

in [15], but without particular success in the experimental part since an opposite

trend to the prediction has been observed. The most significant contribution to

devising experimental procedures to determine the micropolar material param-85

eters is given by Lakes and co-workers in their analysis of bones [16, 17, 18],

polymeric foams [19, 20, 2, 21] and metal foams [22]. A different approach to

determining the micropolar parameters is based on various homogenisation pro-

cedures applied to lattices, granular media, cellular structures and heterogeneus

structures such as masonry structures [23, 24, 25, 26], which provide a more sig-90

nificant source of the actual values for the micropolar parameters. In contrast

to the above experiments performed by Lakes and his co-workers, which involve
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specimen preparation on a very small scale, the idea of homogenisation is to

replace a larger-scale composite material or assembly of particles by an effective

micropolar continuum model. Assuming a homogeneous Cosserat material that95

best approximates a heterogeneous Cauchy material, the material parameters

of the observed specimen may be determined more easily. A comprehensive list

of related works can be found in [14].

As mentioned in [27], newer, more comprehensive material models are strug-

gling with experimental verification and their corresponding conceptualisation100

and interpretation. We are faced with a situation where theory precedes exper-

iment. Due to the lack of experimental verifications, we believe that the key to

understanding and developing more precise experimental procedures lies in the

comprehensive numerical analysis of the solution of a boundary value problem

analysed. The numerical analysis should broaden the range of solvable prob-105

lems and open up new possibilities for the numerical simulation of experimental

schemes, so the development of finite elements of high quality is important in

the future progress and understanding of the micropolar continuum theory.

In this paper we present membrane (triangular and quadrilateral) finite el-

ements of different order based on the linear micropolar continuum theory con-110

taining a specific family of interpolation functions for the displacement field

of arbitrary order called linked interpolation. The proposed family of interpo-

lation functions are derived from the closed-form solution of the Timoshenko

beam problem [28], which are later successfully applied to the Mindlin plate

problem [29, 30]. This interpolation involves nodal displacements as well as115

nodal rotations to describe the displacement field. The derived elements will be

compared to the micropolar membrane finite elements involving standard La-

grangian interpolation in four different numerical examples consisting of a force

and displacement patch tests, higher-order patch tests and a stress concentra-

tion analysis.120
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2. Micropolar continuum model

Let us briefly outline the basic equations of the micropolar continuum the-

ory. The detailed exposition may be found in the literature, see e.g. [1]. Let

us analyse a continuous body B of volume V and surface S under the influence

of external actions consisting of distributed volume loads pv and mv and dis-125

tributed surface loads ps and ms, where pv is a body force, mv a body moment,

ps a surface force and ms a surface moment.

At a particular point X within the body at time t there exists a second-order

tensor field σ(x, t) called the Cauchy stress tensor and an additional second-

order couple-stress tensor µ(x, t) where x is the position vector of the point X130

with respect to a chosen spatial frame of reference.

Equilibrium equations. In the state of static equilibrium, we have the following

force equilibrium equation

σ∇+ pv = 0, (1)

where ∇ is the differential operator nabla, as well as the moment equilibrium

equation

µ∇+ a + mv = 0, (2)

where a is twice the axial vector of the skew-symmetric part σa = 1
2 (σ − σT)

of the stress tensor, i.e.

a = 2axial(σa) (3)

defined such that a × v = 2σav for any 3D vector v. Attaching a triad of

orthogonal base vectors and corresponding Cartesian co-ordinates to the chosen

spatial frame of reference, equilibrium equations (1) and (2) may be written as

σij,j + pvi = 0, µij,j − εijkσjk +mvi = 0, (4)

where the first index denotes the direction of the stress or axis of the couple135

stress with respect to the coordinate base and the second index denotes the di-

rection of the surface normal. The summational convention on repeated indices
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is implied, and a comma denotes differentiation with respect to a particular

spatial coordinate, while εijk is the permutation tensor of Levi-Civita.

Likewise, the following natural boundary conditions are defined for the part

of the body surface subject to applied loading:

σ n = ps ⇔ σijnj = psi, µ n = ms ⇔ µijnj = msi, (5)

where n is the outward unit normal to the surface, along with the essential140

boundary conditions on the part of the body surface with prescribed kinematics.

Kinematic equations. In the micropolar continuum theory we have a displace-

ment field w(x) and an additional kinematic field ϕ(x) known as the microro-

tation field which represents the local rotation of the point X and is completely

independent of the displacement field, i.e. different from the rotational part of145

the displacement gradient ω = 1
2 (w ⊗∇−∇⊗w) (the macrorotation of the

classical continuum theory; see [5]). The micropolar strain tensor ε is defined

as

ε = grad w − ϕ̂ = w ⊗∇− ϕ̂ ⇔ εij = wi,j + εijkϕk, (6)

where a superimposed hat on a vector field (·) denotes a skew-symmetric cross-

product operator such that (̂·)v = (·) × v for any 3D vector v. Owing to the150

existence of an independent rotation field ϕ, there also exists a corresponding

micropolar curvature tensor

κ = grad ϕ = ϕ⊗∇ ⇔ κij = ϕi,j , (7)

where the diagonal terms represent torsional strains. The so-callled couple-

stress theory is a special case of the micropolar continuum theory where the

microrotation vector ϕ is equal to the macrorotation vector ω and thus ceases155

to exist as an independent field. As a consequence, in the couple-stress the-

ory, the curvature tensor involves second derivatives of the dispacement field.

When these derivatives are neglected, the curvature tensor also vanishes and

the couple-stress theory reduces to the classical continuum theory.
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Constitutive equations. In a homogeneous isotropic linear elastic micropolar

continuum, the second-order stress and strain tensors σ and ε are related via a

constant isotropic fourth-order constitutive tensor T such that in the Cartesian

component form we have [31]

σij = Tijpqεpq, Tijpq = λδijδpq + µ(δipδjq + δiqδjp) + ν(δipδjq − δiqδjp), (8)

where λ and µ are the Lamé constants, ν is another material constant and δij

is the Kronecker symbol. In the micropolar continuum theory the couple-stress

tensor µ is related to the curvature tensor κ in a completely analogous way

involving three additional material constants so that eventually

σij = λεppδij +(µ+ν)εij +(µ−ν)εji, µij = ακppδij +(β+γ)κij +(β−γ)κji,

(9)

where α, β, γ are additional material parameters of the linear isotropic microp-160

olar continuum. The following restrictions on the material parameters hold true

as a consequence of positive definiteness of the constitutive tensors: 3λ+2µ > 0,

µ > 0, ν > 0, 3α+ 2β > 0, β > 0 and γ > 0. Note that all the stress and strain

tensors are now in general non-symmetric.

These material parameters may be related to a set of technical (measurable)165

parameters consisting of shear modulus G, Poisson’s ratio n, a dimensionless

coupling number between the macrorotation and the microrotation N ∈ 〈0, 1〉,

a dimensionless polar ratio of rotation sensitivity (a quantity which relates the

torsional strains in a way analogous to that in which Poisson’s ratio relates

the normal strains) ψ ∈ 〈0, 32 〉, and the characteristic lengths for torsion and170

bending lt and lb as [32]

λ = 2n G
1−2n , µ = G, ν = G N2

1−N2 ,

α =
2G l2t (1−ψ)

ψ , β = G l2t , γ = G(4l2b − l2t ).
(10)

Weak form of the equilibrium equations.. To construct a numerical solution

procedure of the boundary value problem analysed, it is useful to define the

principle of virtual work as the weak form of the equilibrium equations, i.e. to
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state that the virtual work of external forces must be equal to the virtual work

of the internal forces

Gint(w,ϕ; w,ϕ) = Gext(w,ϕ), (11)

with the virtual works of internal and external forces defined as

Gint(w,ϕ; w,ϕ) =
´
V

(ε : σ + κ : µ)dV,

Gext(w,ϕ) =
´
V

(w · pv +ϕ ·mv)dV +
´
S

(w · ps +ϕ ·ms)dS,
(12)

where w and ϕ are the virtual displacement and microrotation vectors and ε

and κ are the corresponding tensors of virtual micropolar strains and curvatures,

respectively. The algebraic equilibrium equations of the finite element method

will be thus obtained from the following fundamental integral principle

ˆ
V

(ε : σ+κ : µ)dV −
ˆ
V

(w ·pv +ϕ ·mv)dV −
ˆ
S

(w ·ps +ϕ ·ms)dS = 0 (13)

after an appropriate interpolation of the kinematic fields and their virtual coun-

terparts has been specified. In the following section, we propose a generalisation

of the standard Lagrangian interpolation, which includes the rotational degrees

of freedom in the interpolation of the displacement vector - the so-called linked175

interpolation [33, 34, 28].

3. Governing equations of a 2D micropolar continuum.

In order to develop membrane finite elements, the presented boundary value

problem is reduced from 3D to 2D. Consequently, the kinematic fields are in

Cartesian coordinates reduced to only two independent displacements w =180

〈u v 0〉T and one microrotation ϕ = 〈0 0 ϕ〉T, which represents an in-plane (or

drilling) rotation. Furthermore, assuming a plane-strain condition, the stress

and strain tensors are reduced to σ = 〈σ11 σ12 σ21 σ22〉T, µ = 〈µ31 µ32〉T
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and ε = 〈ε11 ε12 ε21 ε22〉T, κ = 〈κ31 κ32〉T respectively with



σ11

σ12

σ21

σ22


=


(λ+ 2µ) 0 0 λ

0 (µ+ ν) (µ− ν) 0

0 (µ− ν) (µ+ ν) 0

λ 0 0 (λ+ 2µ)





ε11

ε12

ε21

ε22


⇔ σ = C1ε,

(14)

µ31

µ32

 =

(β + γ) 0

0 (β + γ)

κ31κ32

 ⇔ µ = C2κ, (15)

where C1 and C2 stand for the micropolar constitutive tensors. Therefore, the

problem is reduced to only four elastic constants λ, µ, ν, and β+γ. The applied

loading is likewise reduced to

pv =


pv1

pv2

0

 =

qv

0

 , mv =


0

0

mv

 , (16)

ps =


ps1

ps2

0

 =

qs

0

 , ms =


0

0

ms

 . (17)

The kinematic equations are reduced to185



ε11

ε12

ε21

ε22

︸ ︷︷ ︸
ε

=


∂
∂x 0

∂
∂y 0

0 ∂
∂x

0 ∂
∂y


︸ ︷︷ ︸

Du
T

uv
︸ ︷︷ ︸

u

+ϕ



0

1

−1

0

︸ ︷︷ ︸
Iϕ

⇔ ε = Du
Tu + ϕIϕ, (18)

while the curvatures are reduced toκ31κ32

︸ ︷︷ ︸
κ

=

 ∂
∂x

∂
∂y

︸ ︷︷ ︸
Dµ

T

ϕ = Dµ
Tϕ. (19)
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In order to obtain the numerical solution of the problem, the kinematic fields

have to be approximated using a chosen type of interpolation. In general, the

real and virtual kinematic fields are interpolated as uh = Nu de, ϕh = Nϕ de,

uh = Nu d
e
, ϕh = Nϕ d

e
, where Nu and Nϕ represent the matrices of interpo-

lation functions over an element for the displacement and microrotation field,

respectively, and de and d
e

represent the real and virtual vector of element nodal

degrees of freedom, respectively. Superscript h denotes the discretization, while

e denotes the element to which the interpolation is applied. After introducing

the interpolation and substituting the kinematic and constitutive equations we

obtain the interpolated element internal and external virtual works as

Gint,e(de; d
e
) = d

eT
ˆ
V

(Nu
TDu + Nϕ

TIϕ
T)C1(Du

TNu + IϕNϕ)dV de+

d
eT
ˆ
V

(Nϕ
TDϕ)C2(Dϕ

TNϕ)dV de = d
eT

Kede (20)

Gext,e(d
e
) =d

eT
ˆ
V

(Nu
Tqv + Nϕ

Tmv)dV + d
eT
ˆ
S

(Nu
Tqs + Nϕ

Tms)dS

=d
eT

fe, (21)

where Ke and fe represent the element stiffness matrix and external force vector.

The global internal and external virtual works are obtained as

Gint(d; d) =
nelem

A
e=1

Gint,e(de; d
e
) ≡ d

T
Kd, Gext(d) =

nelem

A
e=1

Gext,e(d
e
) ≡ d

T
f

(22)

with d and d as the global vectors of real and virtual displacements, K =
nelem

A
e=1

Ke and f =
nelem

A
e=1

fe as the global stifness matrix and external force vector,

nelem as the total number of elements in the mesh, and A as the finite-element

assembly operator [35]. Finally, by substituting Gint and Gext in (11) we obtain190

the approximated weak form. Recognising arbitrariness of d, we eventually

obtain the basic set of algebraic equations of the finite element method as K d =

f .
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4. Lagrangian and linked interpolation

Within this paper two different interpolations are compared for the families

of triangular and quadrilateral finite elements. The first one is the conven-

tional Lagrange interpolation [36], serving to approximate the real and virtual

displacements as

uh = Nud
e, uh = Nud

e
, (23)

and the real and virtual microrotation as

ϕh = Nϕ de, ϕh = Nϕ d
e
, (24)

with

Nu =

N1 0 0 . . . Nnnode
0 0

0 N1 0 . . . 0 Nnnode
0

 and (25)

Nϕ = 〈0 0 N1 . . . 0 0 Nnnode
〉, (26)

nnode as the number of nodes on the element and Ni(i = 1, ..., nnode) as the ith

Lagrangian polynomial. The second interpolation analysed is the linked interpo-

lation in which the displacement field depends on the nodal microrotation, too.

The linked interpolation for the displacement field consists of the conventional

Lagrange interpolation (represented by matrix Nu) enhanced by the contribu-

tion due to the nodal microrotations. In general, the linked interpolation is

therefore given as

uh = (Nu + Nenh)de, uh = (Nu + Nenh)d
e
, (27)

where Nenh is the matrix of linked-interpolation enhancement to the Lagrangian195

interpolation. In the linked-interpolation framework, the microrotations are still

interpolated conventionally, as defined in equation (24).

The linked interpolation is in [28] derived as the exact solution of differential

equations of a 3D Timoshenko beam. For the present purposes let us limit our
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attention to its 2D form [29, 30], where the displacement field along the in-plane200

axis z orthogonal to the centroidal line x of the beam is

w =

nnode∑
i=1

Niwi −
L

nnode

nnode∑
i=1

ξ − ξi
2

Niϕi, (28)

while the rotation field around the out-of-plane axis y orthogonal to the cen-

troidal line is simply

ϕ =

nnode∑
i=1

Niϕi, (29)

where L is the finite-element length, ξ ∈ [−1, 1] is the natural co-ordinate,

nnode is the number of nodes on the element, ϕi and wi are the rotation and

the displacement at the ith node, Ni is the ith Lagrange polynomial of order

nnode−1, ξi is the natural co-ordinate of the ith node, and the axes x, y, z form a

right-handed co-ordinate system. The displacement field is thus interpolated by

a polynomial one order higher than that used for the rotations. The Lagrangian

polynomials are given as

Ni =

nnode∏
j=1
j 6=i

(ξj − ξ)
(ξj − ξi)

, i = 1, ..., nnode. (30)

In order to generalise the linked interpolation concept presented to 2D mi-

cropolar continuum, it is important to note that, in contrast to beams, for this205

continuum in general there does not exist a closed-form solution of the differ-

ential equations. The approach that we take is the following: (i) we apply

interpolation (28) to the element edges only, i.e. we treat the element edges as

beam finite elements and (ii) we average the edge results within the interior of

the element depending on the actual position, so that that interpolation cor-210

rectly describes rigid-body motion. To do this, we follow the approach proposed

in [29, 30] for the Mindlin plate elements.

4.1. Triangular finite elements

The triangular finite element family with the related shape functions is de-

fined in the natural coordinate system. The mapping from the natural coordi-
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nate system (ξ, η) to the Cartesian coordinate system (x, y) is defined as:

x =

nnode∑
a=1

Na(ξ, η)xa, y =

nnode∑
a=1

Na(ξ, η)ya, (31)

where nnode stands for the number of element nodes, (xa, ya) represent the

element nodal coordinates in the Cartesian coordinate system and Na(ξ, η) rep-215

resent the isoparametric shape functions with arguments ξ, η which run between

[0, 1]. Here we consider the elements with three, six or ten nodes, with a node-

numbering convention as shown in Figure 1.

(a) Order 1 element (T3) (b) Order 2 element (T6) (c) Order 3 element (T10)

Figure 1: Triangular finite elements of different order

The shape functions in (31) are most easily expressed via a set of the so-called

area coordinates220

ζ1(ξ, η) = 1− ξ − η, ζ2(ξ, η) = ξ, ζ3(ξ, η) = η. (32)

For the edge nodes in Figure 1 taken at the edge halves in T6 and at the edge

thirds in T10 and the inner node in T10 in its centroid they are given in Table

1.
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Table 1: Triangular shape functions

Element T3 T6 T10

Vertex shape functions
Na = ζa Na = ζa(2ζa − 1) Na = 1

2ζa(3ζa − 1)(3ζa − 2)
(a = 1, 2, 3)

Edge shape functions

- Ni+3 = 4ζiζj

N2i+2 = 9
2ζiζj(3ζi − 1)

(i = 1, 2, 3, N2i+3 = 9
2ζiζj(3ζj − 1)

j = max(1; i+ 1 < 4))

Centroid node shape function - - N10 = 27ζ1ζ2ζ3

For the Lagrangian family of elements the same shape functions are used for

the interpolation of real and virtual displacements and rotations as given in225

equations (23) and (24). For the family of elements with linked interpolation,

the rotations are still interpolated using the Lagrange polynomials and (24), but

in the displacement field we now have an enhancement in the displacement field

as shown in equation (27). For the elements of different order, this enhancement

is now defined following the approach given in [30].230

Triangular membrane element with three nodes (T3 + LI). In analogy with

the linked interpolation for a beam element (28), when applied to a two-noded

beam, we propose the linked interpolation for the triangular element with three

nodes and three degrees of freedom per node, named T3 + LI and shown in

Figure 1a) such that235
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uh = (Nu + Nenh)de =

3∑
a=1

Naua +
1

2
ζ2ζ3(ϕ2 − ϕ3)

y2 − y3x3 − x2

+

+
1

2
ζ3ζ1(ϕ3 − ϕ1)

y3 − y1x1 − x3

+

+
1

2
ζ1ζ2(ϕ1 − ϕ2)

y1 − y2x2 − x1


=

3∑
a=1

Naua +

f1,xf1,y

 (ϕ2 − ϕ3) +

f2,xf2,y

 (ϕ3 − ϕ1)+

+

f3,xf3,y

 (ϕ1 − ϕ2) (33)

where fi,x = 1
2ζjζk(yj − yk), fi,y = 1

2ζjζk(xk − xj) and i, j, k is a cyclic permu-

tation of 1, 2, 3 resulting in Nenh =
[
Nenh,1 Nenh,2 Nenh,3

]
where

Nenh,i =

0 0 fk,x − fj,x
0 0 fk,y − fj,y

 . (34)

Triangular membrane element with six nodes (T6 + LI). Now we generalise the

linked interpolation of a beam element (28) applied to a three-noded beam to a

triangular element with six nodes and three degrees of freedom per node, named

T6 + LI and shown in Figure 1b). The displacement interpolation thus follows

as240
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uh = (Nu + Nenh)de =

6∑
a=1

Na(ξ, η)

uava
+

+
1

3
ζ1ζ2(ζ2 − ζ1)(ϕ1 − 2ϕ4 + ϕ2)

y2 − y1x1 − x2

+

+
1

3
ζ2ζ3(ζ3 − ζ2)(ϕ2 − 2ϕ5 + ϕ3)

y3 − y2x2 − x3

+ (35)

+
1

3
ζ3ζ1(ζ1 − ζ3)(ϕ3 − 2ϕ6 + ϕ1)

y1 − y3x3 − x1


from where Nenh immediately follows.

Triangular membrane element with ten nodes (T10 + LI). Finally, we develop

the triangular element with ten nodes shown in Figure 1c), which we name T10

+ LI. Generalising the linked interpolation for a beam element (28) applied to

a four-node element245

uh =(Nu + Nenh)de =

10∑
a=1

Na(ξ, η)

uava
+

+
1

8
ζ1ζ2(3ζ1 − 1)(3ζ2 − 1)

y2 − y1x1 − x2

 (ϕ1 − 3ϕ4 + 3ϕ5 − ϕ2)+

+
1

8
ζ2ζ3(3ζ2 − 1)(3ζ3 − 1)

y3 − y2x2 − x3

 (ϕ2 − 3ϕ6 + 3ϕ7 − ϕ3)+ (36)

+
1

8
ζ3ζ1(3ζ3 − 1)(3ζ1 − 1)

y1 − y3x3 − x1

 (ϕ3 − 3ϕ8 + 3ϕ9 − ϕ1),

from where Nenh again immediately follows.

4.2. Quadrilateral finite elements

The second family of finite elements we develop are quadrilateral elements

of order 1, 2 and 3 shown in Figure 2 with three degrees of freedom per node
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(horizontal and vertical displacements, microrotation). As for the triangular250

elements, the quadrilateral finite element family and the corresponding shape

functions are defined in the natural coordinate system where the mapping is

again defined by (31), where here we consider the elements with four, nine

and sixteen nodes (Q4, Q9, Q16) and ξ and η run between [−1, 1]. The node-

numbering convention for the elements is shown in Figure 2.255

(a) Order 1 element (Q4) (b) Order 2 element (Q9) (c) Order 3 element (Q16)

Figure 2: Quadrilateral finite elements of different order

The shape functions in (31) are given for ξ1 = ξ4 = −1, ξ2 = ξ3 = +1, η1 =

η2 = −1, η3 = η4 = +1 as follows. For Q4, they are defined as Na(ξ, η) =

1
4 (1 + ξaξ)(1 + ηaη). For Q9 with ξ8 = −1, ξ5 = ξ7 = ξ9 = 0, ξ6 = +1, η5 =

−1, η6 = η8 = η9 = 0 and η7 = +1 they are given as

Vertex nodes: Na =
1

4
ξη(ξ + ξa)(η + ηa),

Edge nodes 5 and 7: Na =
1

2
η(1− ξ2)(η + ηa),

Edge nodes 6 and 8: Na =
1

2
ξ(ξ + ξa)(1− η2),

Central node: N9 = (1− ξ2)(1− η2).

while for Q16 with ξ11 = ξ12 = −1, ξ5 = ξ10 = ξ13 = ξ16 = − 1
3 , ξ6 = ξ9 =

ξ14 = ξ15 = + 1
3 , ξ7 = ξ8 = +1, η5 = η6 = −1, η7 = η12 = η13 = η14 = − 1

3 ,
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η8 = η11 = η15 = η16 = + 1
3 and η9 = η10 = +1 they are given as

Vertex nodes: Na =
81

256
(1 + ξaξ)(1 + ηaη)(

1

9
− ξ2)(

1

9
− η2),

Edge nodes with ξa = ±1 and ηa = ±1

3
: Na =

243

256
(1− ξ2)(η2 − 1

9
)(

1

3
+ 3ξaξ)(1 + ηaη),

Edge nodes with ξa = ±1

3
and ηa = ±1 : Na =

243

256
(1− η2)(ξ2 − 1

9
)(

1

3
+ 3ηaη)(1 + ξaξ),

Internal nodes: Na =
729

256
(1− ξ2)(1− η2)(

1

3
+ 3ηaη)(

1

3
+ 3ξaξ).

As in the family of triangular elements, for the quadrilateral elements of the La-

grangian type, the interpolation for the displacements and rotations are given

by (23) and (24), the latter again also remaining valid for the quadrilateral fam-

ily of elements with linked interpolation. The enhancement in the displacement

field Nenh in (27) is now defined following the approach given in [29], based on260

the expression (28) for the linked interpolation in beams.

In [29] the authors have additionally enhanced the proposed finite elements

with linked interpolation by introducing additional bubble modes. However,

their numerical results have shown that the bubble mode contribution to the

obtained result is negligible, except for the higher order patch test satisfaction.265

Therefore, the presented elements are not enhanced with additional modes.

Quadrilateral finite element with four nodes (Q4 + LI). For the quadrilateral

element with four nodes shown in Figure 2a), named Q4 + LI, we define the
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displacement interpolation as

uh = (Nu + Nenh)de =

4∑
a=1

Na(ξ, η)

uava
+

+
1

8

1

2
(1− ξ2)(1− η)

y2 − y1x1 − x2

 (ϕ2 − ϕ1)+

+
1

8

1

2
(1 + ξ)(1− η2)

y3 − y2x2 − x3

 (ϕ3 − ϕ2)+

+
1

8

1

2
(1− ξ2)(1 + η)

y4 − y3x3 − x4

 (ϕ4 − ϕ3)+

+
1

8

1

2
(1− ξ)(1− η2)

y1 − y4x4 − x1

 (ϕ1 − ϕ4)

=

4∑
a=1

Na(ξ, η)

uava
+

+

f1,xf1,y

 (ϕ2 − ϕ3) +

f2,xf2,y

 (ϕ3 − ϕ4)+

+

f3,xf3,y

 (ϕ4 − ϕ1) +

f4,xf4,y

 (ϕ1 − ϕ2), (37)

where f1,x = 1
16 (1 + ξ)(1 − η2)(y2 − y3), f2,x = 1

16 (1 − ξ2)(1 + η)(y3 − y4),

f3,x = 1
16 (1− ξ)(1− η2)(y4 − y1), f4,x = 1

16 (1− ξ2)(1− η)(y1 − y2) and f1,y =

1
16 (1 + ξ)(1 − η2)(x3 − x2), f2,y = 1

16 (1 − ξ2)(1 + η)(x4 − x3), f3,y = 1
16 (1 −

ξ)(1 − η2)(x1 − x4), f4,y = 1
16 (1 − ξ2)(1 − η)(x2 − x1) resulting in Nenh =[

Nenh,1 Nenh,2 Nenh,3 Nenh,4

]
where

Nenh,1 =

0 0 f4,x − f3,x
0 0 f4,y − f3,y

 , Nenh,2 =

0 0 f1,x − f4,x
0 0 f1,y − f4,y

 , (38)

Nenh,3 =

0 0 f2,x − f1,x
0 0 f2,y − f1,y

 , Nenh,4 =

0 0 f3,x − f2,x
0 0 f3,y − f2,y

 .
Quadrilateral finite element with nine nodes (Q9+LI). For the quadrilateral

element with nine nodes shown in Figure 2b), named Q9 + LI, we define the
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displacement interpolation as

uh =(Nu + Nenh)de =

9∑
a=1

Na(ξ, η)

uava
+

− 1

8

1

3
ξη(1− ξ2)(1− η)

y2 − y1x1 − x2

 (ϕ1 − 2ϕ5 + ϕ2)+

+
1

4

1

3
ξ(1− ξ2)(1− η2)

y6 − y8x8 − x6

 (ϕ8 − 2ϕ9 + ϕ6)+

+
1

8

1

3
ξη(1− ξ2)(1 + η)

y3 − y4x4 − x3

 (ϕ4 − 2ϕ7 + ϕ3)+ (39)

+
1

8

1

3
ξη(1− ξ)(1− η2)

y4 − y1x1 − x4

 (ϕ1 − 2ϕ8 + ϕ4)+

− 1

4

1

3
η(1− ξ2)(1− η2)

y7 − y5x5 − x7

 (ϕ5 − 2ϕ9 + ϕ7)+

− 1

8

1

3
ξη(1 + ξ)(1− η2)

y3 − y2x2 − x3

 (ϕ2 − 2ϕ6 + ϕ3)

from where Nenh follows in a straight-forward way.270

Quadrilateral finite element with sixteen nodes (Q16+LI). For the quadrilateral

element with sixteen nodes shown in Figure 2c) and named Q16 + LI, we define
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the displacement interpolation as

uh =(Nu + Nenh)de =

16∑
a=1

Na(ξ, η)

uava
+

+
1

4
I1ηNξ

y2 − y1x1 − x2

 (ϕ1 − 3ϕ5 + 3ϕ6 − ϕ2)+

+
1

4
I2ηNξ

y7 − y12x12 − x7

 (ϕ12 − 3ϕ13 + 3ϕ14 − ϕ7)+

+
1

4
I3ηNξ

y8 − y11x11 − x8

 (ϕ11 − 3ϕ16 + 3ϕ15 − ϕ8)+

+
1

4
I4ηNξ

y3 − y4x4 − x3

 (ϕ4 − 3ϕ10 + 3ϕ9 − ϕ3)+ (40)

− 1

4
I1ξNη

y4 − y1x1 − x4

 (ϕ1 − 3ϕ12 + 3ϕ11 − ϕ4)+

− 1

4
I2ξNη

y10 − y5x5 − x10

 (ϕ5 − 3ϕ13 + 3ϕ16 − ϕ10)+

− 1

4
I3ξNη

y9 − y6x6 − x9

 (ϕ6 − 3ϕ14 + 3ϕ15 − ϕ9)+

− 1

4
I4ξNη

y3 − y2x2 − x3

 (ϕ2 − 3ϕ7 + 3ϕ8 − ϕ3)

where I1ξ = − 9
16 (ξ2 − 1

9 )(ξ − 1), I2ξ = 27
16 (ξ2 − 1)(ξ − 1

3 ), I3ξ = 27
16 (ξ2 −

1)(ξ + 1
3 ), I4ξ = 9

16 (ξ2 − 1
9 )(ξ + 1), Nξ = 9

32 (ξ2 − 1
9 )(ξ2 − 1),and analogously

for I1η, I2η, I3η, I4η, Nη using the variable η. From here, Nenh again follows

immediately.

5. Numerical examples275

In this section the presented families of elements are analysed through four

numerical examples. The convergence analysis is performed on a force patch test

using a regular mesh in Section 5.1 and the conclusions drawn are implemented
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in the procedure to run the displacement patch test on an irregular mesh (Sec-

tion 5.2) due to Providas [37]. In Section 5.3, an infinite plate with a cylindrical280

hole subject to uniform tension is analysed and the results are compared to the

analytical solution [6]. Finally, in Section 5.4, a cantilever beam in pure bending

is analysed against the analytical solution [15]. In all the examples, both the

standard Lagrange finite elements and the newly presented linked-interpolation

finite elements are tested.285

5.1. Force patch test: cantilever beam subject to pure tension

A force patch test shown in Figure 3 is performed on a cantilever beam of

length L = 10 m, height h = 2 m and a unit thickness subject to pure axial dis-

tributed loading p = 10 N/m2 using a number of regular meshes. The micropolar

material parameters used are equal to µ = 1000 N/m2, λ = 1000 N/m2, ν =290

500 N/m2 and β = γ = 20 N.

In this example the analytical results for the stress fields (all components

of the stress tensor and the couple-stress tensor equal to zero apart from the

axial tension, which is equal to p) and the axial displacement at the free end

(pL/E) are expected be obtained for an arbitrary number of finite elements in295

the mesh. The results of the test for triangular and quadrilateral finite elements

with the conventional (Lagrange) interpolation and with the newly proposed

linked interpolation are given in Table 2.

Figure 3: A cantilever beam subject to pure tension

To understand why most of the linked-interpolation elements fail this test

and find the solution for how to modify them in order to pass it, an inversely300
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posed problem has been studied: the correct nodal displacement and rotations

have been prescribed to the elements with linked interpolation and the resulting

stress and couple-stress tensors as well as the nodal load vector have been anal-

ysed. It turns out that the all the stress and stress-couple components are exact

but, in the nodal load vector, the incorrect moment components are generated305

by the linked interpolation applied to the virtual displacements. Interstingly,

this does not happen in the quadratic elements T6+LI and Q9+LI.

Table 2: Results for the force patch test

Triangular elements Quadrilateral elements

Element RESULT Element RESULT

T3 passed Q4 passed

T3+LI failed Q4+LI failed

T6 passed Q9 passed

T6+LI passed Q9+LI passed

T10 passed Q16 passed

T10+LI failed Q16+LI failed

Motivated by this observation, a solution is found by applying the Petrov–

Galerkin finite-element method, which is based on different interpolation for the

test and the trail functions – here the virtual and the actual displacement fields.310

To eliminate the anomalous nodal moments caused by the linked interpolation

of the virtual displacements u, here we choose to interpolate them using the

standard Lagrangian polynomials, i.e.

u = Nud, (41)

The real displacements, however, are still interpolated using the linked interpo-
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lation, i.e.315

u = (Nu + Nenh)d, (42)

The microrotation interpolation remains unchanged in both its virtual and its

real form, i.e. ϕ = Nϕd and ϕ = Nϕd. The Petrov-Galerkin modification

described is applied to those elements which fail the patch test. We refer to

these elements as T3+LI (PG), T10+LI (PG), Q4+LI (PG) and Q10+LI (PG).

When performing the same patch test using the elements based on the Petrov-320

Galerkin method, the patch test for all the elements is passed.

To understand why the quadratic elements with linked interpolation (T6+LI

and Q9+LI) pass this patch test, while the linear and the cubic elements

(T3+LI, T10+LI, Q4+LI and Q16+LI) do not, let us pinpoint the main dif-

ference between these two groups of elements in the character of the enhanced325

shape functions caused by the linked interpolation. In the linear and the cu-

bic elements, the enhancement is symmetric, which, when integrated over the

element domain, give a non-zero value, and thus provide non-desired nodal

moments for the constant-stress state present here. On the other hand, the

enhanced interpolation functions for the quadratic elements are antisymmetric330

and thus integrate to zero for the constant-stress state. Clearly, for quadrilat-

erals, this argument is applicable only to rectangular quadratic elements. For

non-regular meshes, Q9+LI should not be expected to retain this property and

would have to be accordingly modified into Q9+LI (PG).

Another approach to satisfy the convergence criteria may be provided along335

the lines of the modification of the matrix of enhanced interpolation proposed by

Wilson and Ibrahimbegović [38]. In their work they impose the requirement that

the enhanced part of the interpolation under the state of constant stress does not

contribute to the strain energy. In order to satisfy this requirement, the matrix

of enhanced interpolation has to be modified by adding a constant correction340

matrix, which makes the enhanced part to vanish for a state of constant stress.

Even though in this work this approach is not analysed, we point out that it is
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a possible methodology for modifying the elements with linked interpolation to

satisfy the patch test. A detailed explanation of this approach is provided in

[38].345

5.2. Displacement patch tests for the micropolar continuum

According to Providas [37] the patch test for micropolar finite elements

should consist of a set of three separate tests. The tests are performed on a

rectangular domain bounded by the sides connecting the points 1–4 in Figure 4

and discretised using the distorted finite-element mesh shown. The length and350

height of the domain are L = 0.24 m, H = 0.12 m and the coordinates of the

internal nodes 5–8 are the following 5=(0.04,0.02), 6=(0.18,0.03), 7=(0.08,0.08)

and 8=(0.16,0.08). The material parameters used are the same as defined in the

force patch test example. The displacements and microrotations are imposed on

the external nodes, while the volume loading (if any) is imposed on the interior355

of the domain. The element passes a patch test if the internal nodes are capable

of reproducing the analytical solution imposed by the boundary conditions.

(a) Displacement patch test: quadrilateral

FE mesh

(b) Displacement patch test: triangular

FE mesh

Figure 4: Finite element mesh for the displacement patch test

The first test is the standard patch test of the finite elements in the clas-

sical continuum theory, whereby imposing linearly varying displacement and a

constant microrotation field via appropriate boundary conditions we obtain the

state of constant symmetric stress and strain. The fields are defined as follows:
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u = 10−3(x+ 0.5y), v = 10−3(x+ y), ϕ = 0.25 · 10−3. (43)

The second test describes the state of constant non-symmetric shear (both in

stress and strain), for which a constant body moment is needed. The actual

input is given as

u = 10−3(x+ 0.5y), v = 10−3(x+ y), ϕ = 0.75 · 10−3, mv = 1. (44)

The third test describes the state of constant curvature, whereby imposing lin-

early varying displacement, microrotation and body moment fields as well as a

constant body force field we obtain linearly varying stresses and constant couple-

stresses. Providas considers the third patch test to be a necessary condition for

finite-element convergence even though in this test the shear stresses are linearly

varying :

u = 10−3(x+ 0.5y), v = 10−3(x+ y), ϕ = 10−3(0.25 + (x− y)),

px = py = 1, mv = 2(x− y).
(45)

According to [36], however, satisfaction of a patch test in which stress distribu-

tion is variable is not necessary for convergence and, for this reason, we consider

this test to be a higher-order patch test, analogous to a pure bending test.360

The constant stress tests are analysed first. As indicated earlier, when using

an irregular mesh present here, the Q9+LI element fails the first two patch tests.

Its Petrov-Galerkin modification Q9+LI (PG), however, passes them, as do also

all the other proposed elements.

Regarding the third test, all the elements in which the standard Lagrangian365

interpolation has been utilised pass it (as does also the element given in [39]),

which is expected even though it contradicts the results in the literature [37, 40].

For the highest-order elements T10 and Q16, however, the amount of data pro-

vided on the boundary has not been sufficient and four additional internal nodes

have had to be additionally prescribed the field values to pass it. Concerning370

the family of elements with linked interpolation, T3+LI (PG) and Q4+LI (PG)

fail to pass this test, while all the higher-order elements pass it. The results of
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the third test for the elements which do not pass it are presented in Table 3.

Even though this patch test is not satisfied for the lower-order elements of finite

size, we consider that all the proposed elements satisfy the convergence criteria375

since, as argued earlier, they are able to reproduce exactly any state of constant

stress.

Table 3: Results for Patch test 3 [37]

(a) Displacements at node 6 and stresses in Gauss point at (0.0933, 0.006667)

Element u× 10−3 v × 10−3 ϕ× 10−3 σ11 σ12 σ21 µ31 µ32

T3 0.195 0.210 0.400 4.00 1.59 1.41 0.04 -0.040

T3+LI (PG) 0.194 0.205 0.401 4.01 1.54 1.36 0.04 -0.041

Exact 0.195 0.210 0.400 4.00 1.59 1.41 0.04 -0.040

(b) Displacements at node 6 and stresses in Gauss point at (0.176027, 0.0281456)

Element u× 10−3 v × 10−3 ϕ× 10−3 σ11 σ12 σ21 µ31 µ32

Q4 0.1950 0.210 0.400 4.00 1.65 1.35 0.0400 -0.040

Q4+LI (PG) 0.1946 0.205 0.401 4.03 1.70 1.44 0.0404 -0.038

Exact 0.1950 0.210 0.400 4.00 1.65 1.35 0.0400 -0.040

5.3. Stress concentration around a circular hole

To analyse the influence of the micropolar effect in a homogeneous and

isotropic linear elastic solid, the so-called Kirsch problem [41] – an infinite plate380

with a circular hole subject to uniform tension – is considered next. We focus on

the so-called stress-concentration factor (Kt) – the ratio between a maximum

longitudinal stress at the edge of the hole and the applied surface loading. The

classical theory predicts a constant stress concentration factor equal to three

regardless of the hole size and the material parameters. Experimental tests,385

e.g. [7], however, indicate a smaller stress-concentration factor than that. The

analytical solution of the problem using the micropolar theory [6], however, is

dependent on the hole radius r, the coupling number N and the characteristic
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length l of the material and it returns the stress-concentration factor which is in-

creasingly smaller than the one obtained by the classical theory as the diameter390

of the hole decreases.

In our numerical analysis, the plate is necessarily taken to be of a finite

size and only a quarter of the plate is analysed. The square quarter is taken

to be of unit thickness, L = 16.2 mm long and with a hole of radius r =

0.216 mm subject to uniform uniaxial tension p = 1 N/mm2 acting on one of its395

undented sides. The micropolar material parameters µ = 76923.1 N/mm2, λ =

115385.0 N/mm2, β = γ = 6352.25 N, which correspond to the modulus of

elasticity E = 200000 N/mm2, Poisson’s ratio n = 0.3 and a characteristic

length l = r/1.063 = 0.2031984948 m are taken from [37]. The value of the

micropolar material parameter ν is varied (indicating a variation in the coupling400

number N). The normal displacements and the microrotations along the dented

sides are restrained.

L

p

(a) Triangular elements

L

p

(b) Quadrilateral elements

Figure 5: Finite-element mesh for the Kirsch problem

The results obtained by the proposed triangular and quadrilateral elements

with linked interpolation are compared to those obtained by the finite elements

with standard Lagrangian interpolation. The finite element meshes for trian-405
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gular and quadrilateral elements, shown in Figure 5, consist of 360 and 176

elements, respectively, and are generated using software GMSH [42]. In the

structured part of the mesh the finite elements project radially from the hole

and are embedded within 22 concentric circles propagating in geometric pro-

gression with ratio between the radial increments of 1.2. The part of the mesh410

between the outermost band of the elements between the concentric circles and

the undented edges is defined manually. The input file for GMSH can be found

in the Appendix A.

The stresses are observed in the element containing the stress-concentration

point P=(0.0, 0.216), where the analytical solution is provided. To avoid extrap-415

olation of the computed stresses, the stress values for the numerical simulation

are given at Gauss points closest to the edge of the hole, not at the exact edge,

thus they can never exactly match the analytical result. For easier comparison

with [37] the chosen integration for all triangular elements is 7 Gauss integra-

tion points per element, which brings us closer to the edge, where the analytical420

solution and Providas’s solutions are given. Considering quadrilateral finite el-

ements, the minimum order of integration needed is used, i.e. 3× 3 for order 1

elements, 4× 4 for order 2 elements and 5× 5 for order 3 elements. The Gauss

points monitored have the co-ordinates equal to GP1=(0.00251643, 0.243476),

GP2=(0.0199002, 0.218483) and GP3=(0.0198966, 0.21843) for the triangular425

elements, and GP4=(0.0048953, 0.222164), GP5=(0.00300768, 0.220075) and

GP6=(0.00201581, 0.218758) for the rectangular elements. The results for the

stresses obtained using the triangular and the quadrilateral elements are shown

in Tables 4 and 5, respectively.
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Table 4: Triangular elements: Stress-concentration factor Kt

N ν Kt, [6] Element Kt, GP1 Element Kt, GP2 Element Kt, GP3

0.0 0.0 3.00 T3 2.846 T6 2.865 T10 2.849

T3+LI (PG) 2.846 T6+LI 2.897 T10+LI (PG) 2.849

0.25 5130.77 2.849 T3 2.737 T6 2.729 T10 2.715

T3+LI (PG) 2.740 T6+LI 2.729 T10+LI (PG) 2.715

0.50 25 638.5 2.555 T3 2.508 T6 2.466 T10 2.454

T3+LI (PG) 2.514 T6+LI 2.466 T10+LI (PG) 2.454

0.75 98 900.0 2.287 T3 2.267 T6 2.228 T10 2.219

T3+LI (PG) 2.273 T6+LI 2.228 T10+LI (PG) 2.219

0.90 327 938.0 2.158 T3 2.101 T6 2.117 T10 2.108

T3+LI (PG) 2.109 T6+LI 2.117 T10+LI (PG) 2.108

The numerical results for all the elements show that with the micropolar430

effect increased (through the coupling number N) the stress-concentration factor

is reduced, as predicted theoretically. The predictive power of all the elements,

however, decreases as the coupling number increases.
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Table 5: Quadrilateral elements: Stress-concentration factor Kt

N ν Kt, [6] Element Kt, GP4 Element Kt, GP5 Element Kt, GP6

0.0 0.0 3.00 Q4 2.904 Q9 2.911 Q16 2.916

Q4+LI (PG) 2.904 Q9+LI (PG) 2.911 Q16+LI (PG) 2.916

0.25 5130.77 2.849 Q4 2.768 Q9 2.769 Q16 2.774

Q4+LI (PG) 2.769 Q9+LI (PG) 2.769 Q16+LI (PG) 2.774

0.50 25 638.5 2.555 Q4 2.496 Q9 2.492 Q16 2.498

Q4+LI (PG) 2.497 Q9+LI (PG) 2.492 Q16+LI (PG) 2.498

0.75 98 900.0 2.287 Q4 2.236 Q9 2.240 Q16 2.248

Q4+LI (PG) 2.236 Q9+LI (PG) 2.240 Q16+LI (PG) 2.248

0.90 327 938.0 2.158 Q4 2.104 Q9 2.119 Q16 2.129

Q4+LI (PG) 2.104 Q9+LI (PG) 2.119 Q16+LI (PG) 2.129

With the higher-order elements of both the triangular and the quadrilateral

type, the linked-interpolation elements’ behaviour is in this example exceedingly435

close to that of the standard elements, i.e. these elements do not contribute to

the faster convergence rate. Interestingly, the higher-order linked-interpolation

element T6+LI does behave marginally better than its Lagrangian counterparts

when there is no micropolar effect present. With the low-order triangular ele-

ments, the linked-interpolation slightly improves the accuracy, this time however440

with an increasing micropolar effect. This behaviour is not observed in the low-

order quadrilateral elements, though. Finally, as in [37], it is observed that in

the triangular elements, depending on the value of the micropolar effects, the

higher-order elements often produce results of lower accuracy than the low-order

elements. This effect, however, is not observed in the quadrilateral elements.445

By refining the finite element mesh in the vicinity of the hole, we expect to

get closer to the analytical solution. In order to demonstrate this, the problem

is additionally solved using Q4+LI (PG) by retaining the same number of ele-

ments, but by increasing the ratio between the radial increments in the mesh.
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The ratios are chosen as 1.5 and 1.8 and the results for stresses are observed in450

Gauss points GP7 = (0.00475192, 0.215653) and GP8 = (0.00474938, 0.215536)

and presented in Table 6.

Table 6: Quadrilateral element Q4+LI (PG): Stress-concentration factor Kt for meshes of

different densities around the hole

N Kt, [6]
ratio = 1.2 ratio = 1.5 ratio = 1.8

Kt, GP4 Kt, GP7 Kt, GP8

0.0 3.00 2.904 2.922 2.992

0.25 2.849 2.769 2.785 2.849

0.50 2.555 2.497 2.512 2.562

0.75 2.287 2.236 2.257 2.291

0.90 2.158 2.104 2.128 2.152

5.4. A cantilever beam subject to pure bending

In an attempt to determine the micropolar material constants experimen-

tally, the analytical solution for stresses, displacements and microrotations of a455

micropolar elastic plate subject to pure bending has been derived by Gauthier

[15]. His solution has assumed the lateral boundary conditions which prevent

anticlastic distortion, in effect turning the problem into pure plane-strain bend-

ing of a rectangular micropolar specimen.

Let Gauthier’s specimen be of thickness b and height h placed in the xy plane460

with x as its axis of centroids and assume an applied loading resulting in an

in-plane bending moment M acting on the sides of the specimen orthogonal to

the x-axis. While in the classical elasticity the only way to subject the specimen

to pure bending is via a linearly varying normal surface traction psx = 2y
h p0,

Gauthier has shown that in the micropolar continuum the state of pure bending465

requires both such a traction and a constant surface moment msz acting on the
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same sides of the specimen, with a unique relationship between them given as

msz

p0
=

1

h

(λ+ 2µ)(β + γ)

2µ(λ+ µ)
≡ h

6
(1− n)δ, (46)

with Poisson’s coefficient n and δ = 24(lb/h)2. Obviously, for a material with

vanishing characteristic length (lb → 0) the state of pure bending may not be

achieved if the surface moment loading is present, while for a general micropolar470

material such a state is only possible whenmsz and p0 are given in the proportion

defined above resulting in M = p0Wz + mszA with A = bh and Wz = bh2/6.

As a result,

p0 =
1

1 + (1− n)δ

M

Wz
, msz =

(1− n)δ

1 + (1− n)δ

M

A
, (47)

the only non-vanishing stress components are

σxx = − 1

1 + δ

M

Wz

2y

h
, µzx =

(1− n)δ

1 + δ

M

A
. (48)

and, for the specimen fixed at the origin of the co-ordinate system, the displace-475

ment and rotation fields are

ϕ =
1

1 + δ

Mx

bD
, u = − 1

1 + δ

Mxy

bD
, v =

1

2

1

1 + δ

M

bD

(
x2 +

n

1− n
y2
)
, (49)

where D = Eh3

12(1−n2) is the flexural rigidity. This problem does not induce any

non-symmetry in the stress tensor field, i.e. the solution does not depend on

the coupling number N (and therefore also on the material parameter ν). For

lb → 0, the classical solution is approached in all fields.480

The solution demonstrates that all fields are obtained from their respective

values in classical elasticity as multiplied by the factor 1
1+δ , i.e. bending stiffness

in micropolar elasticity increases with an increase in the material characteristic

length lb. In engineering terms, bending resistance is not anymore proportional

to the height of the specimen squared and we say that the micropolar elasticity485

exhibits the so-called size effect with the solution increasingly departing from the
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classical solution when the characteristic length reaches the order of magnitude

of a representative dimension of the specimen.

Figure 6: Cantilever beam subject to pure bending

The problem described (see Figure 6) is analysed using quadrilateral and

triangular elements of different order, using both the proposed linked interpo-490

lation and the Lagrangian interpolation. The problem is solved for different

values of the characteristic length lb ∼
√
β + γ. The resultant bending mo-

ment M = 20 Nm is applied through a linearly varying surface loading and a

constant surface moment as described above and summarised in Table 7. The

distributed loading is applied through corresponding concentrated nodal forces495

and moments obtained by integration as defined in equation (22).

Table 7: External loading depending on the value of lb

lb/h lb β + γ p0 msz

0.05 0.1 24.0 28.708 133 971 291 860 0.430 622 009 569 378

0.15 0.3 216.0 21.352 313 167 259 780 2.882 562 277 580 070

0.30 0.6 864.0 11.450 381 679 389 320 6.183 206 106 870 228

0.60 1.2 3 456.0 4.010 695 187 165 778 8.663 101 604 278 070

0.90 1.8 7 776.0 1.925 545 571 245 185 9.358 151 476 251 610

The length of the cantilever is taken as L = 10 m, the height is h = 2 m

and the engineering material parameters are E = 1500 N/m
2

and n = 0.25

which give the Lamé constants µ = 600 N/m2 and λ = 600 N/m2. The material
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parameter ν = 200 N/m2 depends on the value of the coupling number, which is,500

in this example, chosen to be equal to N = 0.5, but in this example can have an

arbitrary value, as discussed above. Along the left-hand edge of the cantilever

all the horizontal displacements and microrotations are restrained. The vertical

displacement at the left-hand edge is restrained only at the cantilever axis in

order to preserve the symmetry of the system.505

(a) Q4 elements (b) T3 elements

Figure 7: Finite element mesh, loading and boundary conditions

The problem is solved using a mesh of two quadrilateral or four triangular

elements of different order shown in Figure 7. The left-hand side nodes in the

higher-order elements are restrained in the same way as the corner nodes. The

results for the vertical displacement and microrotation v and ϕ at the bottom

right-hand node and the stress σxx in the Gauss point nearest to this node510

obtained by the quadrilateral elements Q4 are compared to the analytical solu-

tion in Table 8 and Figure 8, while the same results obtained by the triangular

elements T3 are shown in Table 10 and Figure 9.
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Table 8: Results obtained using two quadrilateral elements (Q4), 3x3 integration points,

GP = (8.887298, -0.887298), A – Analytical solution, N – Numerical solution

A N A N A N

Element lb/h v v ϕ ϕ σxx,GP σxx,GP

Q4 0.05 0.90012 0.06892 0.17943 0.01269 25.47267 2.22127

Q4+LI (PG) 0.87402 0.17426 26.08884

Q4 0.15 0.66948 0.06740 0.13345 0.01296 18.94586 2.08130

Q4+LI (PG) 0.65566 0.13071 19.56450

Q4 0.30 0.35902 0.06203 0.07157 0.01261 10.15990 1.88150

Q4+LI (PG) 0.35518 0.07082 10.59720

Q4 0.60 0.12575 0.04624 0.02507 0.00978 3.55870 1.29741

Q4+LI (PG) 0.12527 0.02498 3.73716

Q4 0.90 0.06037 0.03234 0.01204 0.00691 1.70853 0.89668

Q4+LI (PG) 0.06025 0.01202 1.79747
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(a) End node vertical displacements (b) End node microrotation

(c) Stresses in Gauss point

Figure 8: Cantilever beam subject to pure bending - Q4 elements

We can see that Q4+LI (PG) significantly improves the results of the con-

ventional Lagrange Q4 element, in particular for the problems with exisiting,515

but less pronounced, micropolar effect. The higher-order quadrilateral elements

with Lagrangian interpolation as well as those with Petrov-Galerkin linked in-

terpolation exactly reproduce the analytical solution.

The improvement due to the linked interpolation in low-order triangulars is

also present but it is far less significant than in the low-order quadrilaterals. The520

higher-order triangulars with both the Lagrangian interpolation as well as those

with the Petrov-Galerkin linked interpolation again provide the analytical result.

When the Petrov-Galerkin interpolation in six-node triangulars is switched off

(note that in these elements the Petrov-Galerkin interpolation is not necessary

for convergence), the results deteriorate by at most 0.025% (for lb/h = 0.05),525
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the errors reducing rapidly as lb/h increases and falling to below 0.003% for

lb/h = 0.30.

Next we analyse h-convergence of the first-order elements with Lagrange and

linked interpolation by modelling the same problem shown in Figure 6 for low

lb/h = 0.05 and high lb/h = 0.90 micropolar effects. We perform the analysis530

on a number of meshes with equal number of uniform elements per length and

height of the specimen and show the results in Table 9. We can see that Q4+LI

(PG) has a faster convergence rate than the Q4 element, but both elements

converge to the exact solution. Again the comparative advantage of the linked-

interpolation elements is more obvious for the lower value of lb/h.535
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Table 9: h-convergence of first order quadrilateral elements for lb/h = 0.05 and lb/h = 0.9,

3 × 3 integration points used

Element Mesh size
lb/h = 0.05 lb/h = 0.9

v ϕ v ϕ

Q4
2×2

0.22336 0.04233 0.04976 0.01010

Q4+LI (PG) 0.87402 0.17426 0.06024 0.01201

Q4
4×4

0.51163 0.09735 0.05730 0.01148

Q4+LI (PG) 0.89340 0.17803 0.06034 0.01203

Q4
16×16

0.85921 0.16939 0.06017 0.01200

Q4+LI (PG) 0.89970 0.17933 0.06037 0.01203

Q4
32×32

0.88951 0.17666 0.06032 0.01203

Q4+LI (PG) 0.90001 0.17940 0.06037 0.01204

Q4
64×64

0.89744 0.17871 0.06036 0.01203

Q4+LI (PG) 0.90009 0.17942 0.06037 0.01204

Q4
128×128

0.89945 0.17924 0.06037 0.01203

Q4+LI (PG) 0.90011 0.17942 0.06037 0.01204

Q4
256×256

0.89995 0.17938 0.06037 0.01204

Q4+LI (PG) 0.90012 0.17943 0.06037 0.01204

EXACT 0.90012 0.17943 0.06037 0.01204
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Table 10: Results obtained using four triangular elements (T3), 7 integration points,

GP=(5.29858, -0.9402841), A – Analytical solution, N – Numerical solution

A N A N A N

Element lb/h v v ϕ ϕ σxx,GP σxx,GP

T3 0.05 0.90012 0.02359 0.17943 0.00542 26.9938 0.7583

T3+LI (PG) 0.07463 0.01737 3.6797

T3 0.15 0.66948 0.02518 0.13345 0.00586 20.0772 0.7166

T3+LI (PG) 0.08089 0.01765 2.8406

T3 0.30 0.35902 0.02645 0.07157 0.00650 10.7666 0.6447

T3+LI (PG) 0.08296 0.01807 2.5249

T3 0.60 0.12575 0.02367 0.02507 0.00604 3.7712 0.5156

T3+LI (PG) 0.05967 0.01307 1.7067

T3 0.90 0.06037 0.01891 0.01204 0.00487 1.8106 0.3993

T3+LI (PG) 0.03844 0.00844 1.0842
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(a) End node vertical displacements (b) End node microrotation

(c) Stresses in Gauss point

Figure 9: Cantilever beam subject to pure bending - T3 elements

As for the quadrilaterals, the h-refinement is also performed for the triangu-

lar elements of first order with Lagrange and linked interpolation. Even though

the contribution of linked interpolation is small, from Table 11 we can see that

it contributes to faster convergence rate.
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Table 11: h-convergence of first order triangular elements for lb/h = 0.05 and lb/h = 0.9, 7

integration points used

Element Mesh size
lb/h = 0.05 lb/h = 0.9

v ϕ v ϕ

T3
2×2×2

0.00882 0.01817 0.03656 0.00813

T3+LI (PG) 0.20132 0.04242 0.04976 0.01040

T3
4×4×2

0.26903 0.05235 0.05162 0.01058

T3+LI (PG) 0.48812 0.09885 0.05705 0.01151

T3
16×16×2

0.78363 0.15460 0.05974 0.01193

T3+LI (PG) 0.85617 0.17057 0.06015 0.01200

T3
32×32×2

0.86781 0.17232 0.06022 0.01205

T3+LI (PG) 0.88874 0.17709 0.06032 0.01203

T3
64×64×2

0.89181 0.17755 0.06033 0.01203

T3+LI (PG) 0.89725 0.17883 0.06036 0.01203

T3
128×128×2

0.89803 0.17895 0.06036 0.01203

T3+LI (PG) 0.89940 0.17927 0.06037 0.01203

T3
256×256×2

0.89960 0.17930 0.06037 0.01203

T3+LI (PG) 0.89994 0.17939 0.06037 0.01204

EXACT 0.90012 0.17943 0.06037 0.01204

6. Conclusion540

A new family of membrane finite elements interpolated using the linked-

interpolation concept for the analysis of the micropolar continuum theory is

presented. Triangular and quadrilateral elements of different order are devel-

oped and tested through four numerical examples and compared to the con-

ventional elements interpolated using the Lagrangian interpolation. In order to545

assure convergence, the proposed linked-interpolation finite elements are mod-

ified using Petrov-Galerkin interpolation. In the pure-bending test it is shown
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that, for the low-order elements, the linked interpolation makes the solution

more accurate, significantly so for the case of the Q4 quadrilaterals. Interest-

ingly, this improvement is reduced as the ratio between the characteristic length550

of the micropolar material and a characteristic specimen dimension increases.

For the infinite plate with circular hole benchmark problem, the newly proposed

finite elements correctly reproduce the amount of stress concentration predicted

by the micropolar theory, but they are only marginally more accurate than their

Lagrangian counterparts.555
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Appendices

A. Input file to generate the FE mesh for the plate with hole685

problem

GMSH software package
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PWH_INPUT FILE_TRIANGULAR.txt
// Gmsh project created on Wed Sep 27 21:48:45 2017
// Sara Grbcic, sara.grbcic@uniri.hr

L=16.2; //domain length and height
r=0.216; //hole radius
a = 1.2; // ratio between the radial increments
n=22; // number of divisions
p=(a-1)/(a^(n)-1)*(L-r);
alpha=90/8*Pi/180; // angle in radians to obtain boundary nodes

Point(1) = {0, 0, 0, 0};
Point(2) = {r, 0, 0, 0};
Point(3) = {0, r, 0, 0};

j=4;
k=1;

For i In {0:n-1}

Point(j) = {r+p*(1-a^i)/(1-a), 0, 0, 0};
Point(j+1) = {0, r+p*(1-a^i)/(1-a), 0, 0};

Circle(k) = {j-1, 1, j-2};
Transfinite Line {k} = 9; 

Line (k+1) ={j-2,j};
Transfinite Line {k+1} = 2; 

Circle(k+2) = {j, 1, j+1};
Transfinite Line {k+2} = 9;

Line (k+3) ={j+1,j-1};
Transfinite Line {k+3} = 2;

Line Loop (k+4)={k,k+1,k+2,k+3};

Plane Surface (k+5) = {(k+4)};

Transfinite Surface {k+5} = {j-2,j,j+1,j-1} Right;

p1=k;
p2=j;
j=j+2;
k=k+5;

EndFor

// THE OTHER STRUCTURED PART
// SURFACE 1
Point(2*n+4) = {L, 0, 0, 0};
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PWH_INPUT FILE_QUADRILATERAL.txt
// Gmsh project created on Wed Sep 27 21:48:45 2017
// Sara Grbcic, sara.grbcic@uniri.hr

L=16.2; //domain length and height
r=0.216; //hole radius
a = 1.2; // ratio between the radial increments
n=22; // number of divisions
p=(a-1)/(a^(n)-1)*(L-r);
alpha=90/8*Pi/180; // angle in radians to obtain boundary nodes

Point(1) = {0, 0, 0, 0};
Point(2) = {r, 0, 0, 0};
Point(3) = {0, r, 0, 0};

j=4;
k=1;

For i In {0:n-1}

Point(j) = {r+p*(1-a^i)/(1-a), 0, 0, 0};
Point(j+1) = {0, r+p*(1-a^i)/(1-a), 0, 0};

Circle(k) = {j-1, 1, j-2};
Transfinite Line {k} = 9; // 9 = number of nodes per line

Line (k+1) ={j-2,j};
Transfinite Line {k+1} = 2;  // 2 = number of nodes per line

Circle(k+2) = {j, 1, j+1};
Transfinite Line {k+2} = 9;  // 9 = number of nodes per line

Line (k+3) ={j+1,j-1};
Transfinite Line {k+3} = 2;

Line Loop (k+4)={k,k+1,k+2,k+3};

Plane Surface (k+5) = {(k+4)};

Transfinite Surface {k+5} = {j-2,j,j+1,j-1} Right;
Recombine Surface {k+5};

p1=k;
p2=j;
j=j+2;
k=k+5;

EndFor

// THE OTHER STRUCTURED PART
// SURFACE 1
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PWH_INPUT FILE_QUADRILATERAL.txt
Point(2*n+4) = {L, 0, 0, 0}; 
Line (5*n+2) = {p2,2*n+4}; 
Transfinite Line {5*n+2} = 2;

Point(2*n+5) = {L, L, 0, 0}; //101
Point(2*n+6) = {L, (r+p*(1-a^(n-1))/(1-a))*Sin(alpha), 0, 0}; 
Point(2*n+7) = {L, (r+p*(1-a^(n-1))/(1-a))*Sin(2*alpha), 0, 0}; 
Point(2*n+8) = {L, (r+p*(1-a^(n-1))/(1-a))*Sin(3*alpha), 0, 0};
Line (5*n+3) = {2*n+4,2*n+6,2*n+7,2*n+8,2*n+5};
Transfinite Line {5*n+3} = 5;

Point(2*n+9) = {(r+p*(1-a^(n-1))/(1-a))*Cos(4*alpha), 
(r+p*(1-a^(n-1))/(1-a))*Sin(4*alpha), 0, 0};
Line (5*n+4) = {2*n+5,2*n+9};
Transfinite Line {5*n+4} = 2;

Circle (5*n+5) = {2*n+9,1,p2};
Transfinite Line {5*n+5} = 5;

Line Loop(5*n+6)={5*n+2,5*n+3,5*n+4,5*n+5};

Plane Surface (5*n+7) = {5*n+6}; 
Transfinite Surface {5*n+7};
Recombine Surface {5*n+7};

// SURFACE 2
Point(2*n+10) = {0, L, 0, 0};
Line (5*n+8) = {2*n+5,2*n+10};
Transfinite Line {5*n+8} = 5;

Line (5*n+9) = {2*n+10,p2+1};
Transfinite Line {5*n+9} = 2;

Circle (5*n+10) = {p2+1,1,2*n+9};
Transfinite Line {5*n+10} = 5;

Line Loop(5*n+11)={5*n+8,5*n+9,5*n+10,-(5*n+4)};

Plane Surface (5*n+12) = {5*n+11}; 
Transfinite Surface {5*n+12};
Recombine Surface {5*n+12};

Mesh.Algorithm = 1;

Mesh.ElementOrder = 1; //Set element order

//Physical Surface("quads") = {66, 210, 205, 111, 106, 101, 96, 91, 86, 81, 76, 
71, 11, 61, 56, 51, 46, 41, 36, 31, 26, 21, 16}; //This needs to be done 
manually

Mesh 2;  // Generate 2D mesh
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PWH_INPUT FILE_QUADRILATERAL.txt
Coherence Mesh;  // Remove duplicate entities

//Save "plate-with-hole-Q4-a=1.2.msh";  // Save mesh in MSH format
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