Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 92072

On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients


Vrdoljak, Marko
On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients // Applied Mathematics and Scientific computing / Drmač, Z.; Hari V.; Sopta L.; Tutek Z.; Veselić K. (ur.).
Zagreb: Matematički odsjek Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, 2001. str. 26-27 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 92072 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients

Autori
Vrdoljak, Marko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Applied Mathematics and Scientific computing / Drmač, Z.; Hari V.; Sopta L.; Tutek Z.; Veselić K. - Zagreb : Matematički odsjek Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, 2001, 26-27

Skup
Applied Mathematics and Scientific computing

Mjesto i datum
Dubrovnik, Hrvatska, 04.06.2001. - 08.06.2001

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
principal eigenvalue; homogenisation; stationary diffusion

Sažetak
We consider the eigenvalue problem $$ \left\{\eqalign{ -&\rm{ div} ({\bf A}\nabla u)=\lambda\rho u\cr &u\in {\rm H}^1_0(\Omega)\cr } \right. $$ where $\Omega\in{\bf R}^d$ is open and bounded, $\rho\in{\rm L}^\infty(\Omega)$ and ${\bf A}\in{\rm L}^\infty(\Omega;{\rm M}_{d\times d})$ satisfying $$ {\bf A}(x)\xi\cdot\xi\geq\alpha\xi\cdot\xi\,\quad\rho(x)\geq c\,,\qquad \xi\in{\bf R}^d, \ ,{\rm a.e.}\x\in\Omega $$ for some $\alpha, c>0$. Using the strong maximum principle, obtained by Harnack's inequality, and Krein-Rutman's th eorem, the existence of principle eigenvalue is proved. Moreover, under appropriate conditions, the pr incipal eigenvalue depends continuously on coefficients with respect to H-topology for ${\b f A}$ and L$^\infty$ weak $\ast$ topology for $\rho$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037015

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Marko Vrdoljak (autor)


Citiraj ovu publikaciju:

Vrdoljak, Marko
On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients // Applied Mathematics and Scientific computing / Drmač, Z.; Hari V.; Sopta L.; Tutek Z.; Veselić K. (ur.).
Zagreb: Matematički odsjek Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, 2001. str. 26-27 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Vrdoljak, M. (2001) On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients. U: Drmač, Z., Hari V., Sopta L., Tutek Z. & Veselić K. (ur.)Applied Mathematics and Scientific computing.
@article{article, author = {Vrdoljak, Marko}, year = {2001}, pages = {26-27}, keywords = {principal eigenvalue, homogenisation, stationary diffusion}, title = {On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients}, keyword = {principal eigenvalue, homogenisation, stationary diffusion}, publisher = {Matemati\v{c}ki odsjek Prirodoslovno-matemati\v{c}kog fakulteta Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Vrdoljak, Marko}, year = {2001}, pages = {26-27}, keywords = {principal eigenvalue, homogenisation, stationary diffusion}, title = {On principal eigenvalue of stationary diffusion problem with nonsymmetric coefficients}, keyword = {principal eigenvalue, homogenisation, stationary diffusion}, publisher = {Matemati\v{c}ki odsjek Prirodoslovno-matemati\v{c}kog fakulteta Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Dubrovnik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font