Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 915180

De Novo Assembly using Semi-Supervised Read Categorization


Šebrek, Tomislav; Tomljanović, Jan; Šikić, Mile
De Novo Assembly using Semi-Supervised Read Categorization // Second International Workshop on Data Science / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb, Hrvatska, 2017. str. 73-75 (poster, međunarodna recenzija, prošireni sažetak, znanstveni)


CROSBI ID: 915180 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
De Novo Assembly using Semi-Supervised Read Categorization

Autori
Šebrek, Tomislav ; Tomljanović, Jan ; Šikić, Mile

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, znanstveni

Izvornik
Second International Workshop on Data Science / Lončarić, Sven ; Šmuc, Tomislav - , 2017, 73-75

Skup
Second International Workshop on Data Science

Mjesto i datum
Zagreb, Hrvatska, 30.11.2017

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Deep-learning ; Semi-supervised learning ; De novo assembly ; Chimeric read ; Repeat read.

Sažetak
In this paper, we propose a semi-supervised deep learning method for categorization of reads that impede the de novo genome assembly process. In- stead of dealing directly with sequenced reads, we analyze their coverage graphs converted to 1D-signals. We noticed that specific signal pat-terns occur in each relevant class of reads. Semi-supervised approach is chosen because manually labelling the data is a very slow and tedious process, so our goal was to facili- tate the assembly process with as little labeled data as possible. We tested two models to learn patterns in the coverage graphs: M1 + M2 and semi-GAN. We evaluated the performance of each model based on a manually labeled dataset that comprises various reads from multiple reference genomes with respect to the number of labeled examples that were used during the training process. In addition, we embedded our detection in the assembly process which improved the quality of assemblies.

Izvorni jezik
Engleski

Znanstvena područja
Biologija, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mile Šikić (autor)


Citiraj ovu publikaciju:

Šebrek, Tomislav; Tomljanović, Jan; Šikić, Mile
De Novo Assembly using Semi-Supervised Read Categorization // Second International Workshop on Data Science / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb, Hrvatska, 2017. str. 73-75 (poster, međunarodna recenzija, prošireni sažetak, znanstveni)
Šebrek, T., Tomljanović, J. & Šikić, M. (2017) De Novo Assembly using Semi-Supervised Read Categorization. U: Lončarić, S. & Šmuc, T. (ur.)Second International Workshop on Data Science.
@article{article, author = {\v{S}ebrek, Tomislav and Tomljanovi\'{c}, Jan and \v{S}iki\'{c}, Mile}, year = {2017}, pages = {73-75}, keywords = {Deep-learning, Semi-supervised learning, De novo assembly, Chimeric read, Repeat read.}, title = {De Novo Assembly using Semi-Supervised Read Categorization}, keyword = {Deep-learning, Semi-supervised learning, De novo assembly, Chimeric read, Repeat read.}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {\v{S}ebrek, Tomislav and Tomljanovi\'{c}, Jan and \v{S}iki\'{c}, Mile}, year = {2017}, pages = {73-75}, keywords = {Deep-learning, Semi-supervised learning, De novo assembly, Chimeric read, Repeat read.}, title = {De Novo Assembly using Semi-Supervised Read Categorization}, keyword = {Deep-learning, Semi-supervised learning, De novo assembly, Chimeric read, Repeat read.}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font