Pregled bibliografske jedinice broj: 915063
Read classification using semi-supervised deep learning
Read classification using semi-supervised deep learning // 2nd International workshop on deep learning for precision medicine, ECML-PKDD 2017
Skopje, Sjeverna Makedonija, 2017. str. 1-8 (predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 915063 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Read classification using semi-supervised deep learning
Autori
Šebrek, Tomislav ; Tomljanović, Jan ; Krapac, Josip ; Šikić, Mile
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Izvornik
2nd International workshop on deep learning for precision medicine, ECML-PKDD 2017
/ - , 2017, 1-8
Skup
2nd International workshop on deep learning for precision medicine, ECML-PKDD 2017
Mjesto i datum
Skopje, Sjeverna Makedonija, 18.07.2017. - 22.07.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
deep learning, Semi-supervised learning, De novo assembly, chimeric read, repeat read
Sažetak
N this paper, we propose a semi-supervised deep learning method for detecting the specific types of reads that impede the de novo genome assembly process. Instead of dealing directly with sequenced reads, we analyze their cov- erage graphs converted to 1D-signals. We noticed that specific signal patterns occur in each relevant class of reads. Semi-supervised approach is chosen be-cause manually labelling the data is a very slow and tedious process, so our goal was to facilitate the assembly process with as little labeled data as possible. We tested two models to learn patterns in the coverage graphs: M1+M2 and semi-GAN. We evaluated the performance of each model based on a manually labeled dataset that comprises various reads from multiple reference genomes with re-spect to the number of labeled examples that were used during the training pro-cess. In addition, we embedded our detection in the assembly process which im-proved the quality of assemblies.
Izvorni jezik
Engleski
Znanstvena područja
Biologija, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb