Pregled bibliografske jedinice broj: 913310
Multi-label Classification of Movie Posters into Genres with Rakel Ensemble Method
Multi-label Classification of Movie Posters into Genres with Rakel Ensemble Method // Artificial Intelligence XXXIV. SGAI 2017. Lecture Notes in Computer Science, vol 10630 / Bramer, M. ; Petridis, M. (ur.).
Cham: Springer, 2017. str. 370-383 doi:10.1007/978-3-319-71078-5_31 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 913310 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multi-label Classification of Movie Posters into
Genres with Rakel Ensemble Method
Autori
Ivašić-Kos, Marina ; Pobar, Miran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Artificial Intelligence XXXIV. SGAI 2017. Lecture Notes in Computer Science, vol 10630
/ Bramer, M. ; Petridis, M. - Cham : Springer, 2017, 370-383
ISBN
978-3-319-71077-8
Skup
AI-2017 Thirty-seventh SGAI International Conference on Artificial Intelligence
Mjesto i datum
Cambridge, Ujedinjeno Kraljevstvo, 12.12.2017. - 14.12.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Multi-label classification ; RAKEL ensemble method ; Movie poster ; Classemes ; GIST
Sažetak
Movies can belong to more than one genre, so the problem of determining the genres of a movie from its poster is a multi-label classification problem. To solve the multi- label problem, we have used the RAKEL ensemble method along with three typical single-label base classification methods: Naïve Bayes, C4.5 decision tree, and k-NN. The RAKEL method strives to overcome the problem of computational cost and power set label explosion by breaking the initial set of labels into several small-sized label sets. The classification performance of base classifiers on different feature sets is evaluated using multi-label evaluation measures on poster dataset containing 6000 posters classified into 18 and 11 genres. Keeping this in mind, we wanted to examine how different visual feature sets, extracted from poster images, are related to the performance of automatic detection of movie genres, as well as compare it to the performance obtained with the Classeme feature descriptors trained on the datasets of general images.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-06-2016-8345
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus