
ON THE CUSPIDAL SUPPORT OF A GENERIC
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Abstract. We prove that, for p–adic quasi-split classical groups, generic rep-

resentations in an L–packet have the smallest cuspidal support among all the

representations in that L–packet.

1. Introduction

Since the seminal work of Arthur [1] (and later of Mok ([10])), there is an in-
creased effort to understand representations in local Arthur packets (in many di-
rections; e.g. to relate Mœglin’s parametrization with the Arthur’s work, mostly
done by Mœglin herself). The general characterization of the representations in
Arthur’s class (i.e., those irreducible admissible representations which occur as lo-
cal components of automorphic representations) is still unknown.

Along this lines lies the study of Langlands parameters and L-packets. Although
better understood than A-packets, there are many questions still unresolved, e.g.,
understanding representation from different Bernstein components inside one L–
packet. This question (and a generalization of it on the Galois side of the Langlands
parameter) was addressed in [3].

In this short note we prove, roughly, that in a generic L-packet for a classical
quasi-split p-adic group, the generic representations have the smallest cuspidal sup-
port. This is, somehow, the simplest case where one can characterize the relation
between different Bernstein components of the representations in one L–packet.
This result is certainly expected by experts, but we were not able to find a refer-
ence for it, and we hope that writing down the proof of this fact will be helpful in
deeper understanding of the structure of L–packets.

To prove this result, we mainly use a claim we proved in Proposition 3.1 of [6]
(and Remark after it, cf. also the sixth section of [6]). This claim follows directly
from Mœglin-Tadić classification of the discrete series for classical groups and can
be briefly explained as follows: the ε factor attached to a generic discrete series
equals one. This ε factor is one of the invariants of the discrete series in Mœglin-
Tadić classification and it can be related to (we do not need this in this paper) the
character of the component group of the centralizer of the Langlands parameter
(this character is one the ingredients of the Langlands parametrization of all the
irreducible representations of p–adic reductive groups). Thus, essentially, the claim
in [6] amounts to the claim that generic representations in an L–packet correspond
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to the trivial character (of the component group), which is now re-proved by Atobe
([2]), directly from Arthur’s classification.

We wish to thank Marko Tadić for mentioning this problem to us, and for point-
ing out the reference [8]. Also, we wish to thank Institute for Mathematical Sciences,
National University of Singapore for their warm hospitality during program New
Developments in Representation Theory, where this paper was written.

1.1. Notation. Let F be a non-archimedean local field of characteristic zero. Let
Gn denote a group in one of the following series of classical, quasi-split groups (here
n denotes the semisimple F–rank of that group): full even orthogonal groups if
that group is split; otherwise it denotes special even orthogonal groups, odd special
orthogonal groups, symplectic groups, unitary groups. These series of groups are
precisely the (quasi–split) ones whose discrete series representations were classified
in [9] and which were discussed in [5]. We will work exclusively with admissible,
finite length (complex) representations of the groups Gn.

Let P = MN be a parabolic subgroup of Gn with a Levi factor M and the
unipotent radical N. Then M ∼= GL(n1, F )×GL(n2, F )× · · · ×GL(nk, F )×Gn′ ,
where n1, . . . , nk, n

′ ∈ N0 are such that n1 + n2 + · · · + nk + n′ = n. Then, if
πi, i = 1, . . . , k is an admissible representation of GL(ni, F ) and σ′ is an admissible
representation of Gn′ , we denote, following Zelevinsky and Tadić, a parabolically
induced representation (the normalized induction) IndGnP (π1 ⊗ · · · ⊗ πk ⊗ σ′) by
π1×· · ·×πkoσ′. For any n ≥ 1, we denote by ν a character of GL(n, F ) given as a
composition of the determinant character of GL(n, F ) with the modulus character
of F ∗. Let ρ be an irreducible cuspidal representation of some GL(m,F ). Then,
the induced representation ρνk−1 × ρνk−2 × · · · × ρ of GL(mk,F ) has a unique
irreducible subrepresentation, which we denote by δ[ρ, ρνk−1]. This representation
is essentially square-integrable.

For the more information of the notion of the cuspidal support of an irreducible
admissible representation σ of Gn we refer to [4]. We now just briefly recall the
definition. For each irreducible admissible representation σ of Gn, there exists a
standard parabolic subgroup P = MN and an irreducible cuspidal representation
π := π1⊗ · · ·⊗πk⊗σ′ of M (with notationa as in preceeding paragraph) such that
σ is a subquotient of π1 × · · · × πk o σ′. The subgroup M and this representation
of M are unique, up to associativity. This associativity class of (M,π) is called the
cuspidal support of σ. Thus, we have an associativity class of standard parabolic
subgroups on which the cuspidal support of σ is supported (note that we consider
full split even orthogonal groups).

We use results of Jantzen ([7]) on discrete series of classical groups and their cus-
pidal supports: let ρ1, . . . , ρk denote irreducible unitary cuspidal representations of
GL(ni, F ), i = 1, . . . , k, with ρi � ρj , ρ̃j , for i 6= j. Let S(ρi) = {ρiνα, ρ̃iνα :

α ∈ R}. If a discrete series σ of Gn has a cuspidal support in
⋃k
i=1 S(ρi) ∪ σcusp,

where σcusp is an irreducible cuspidal representation of Gn′ , n
′ ≤ n, then, for every

j = 1, . . . , k, there exists an irreducible representation σj (completely determined
by σ) and a representation πj such that σ ↪→ πj o σj , where the cuspidal support
of σj consists only of representations of S(ρj) (and σcusp) and πj does not have ele-
ments of S(ρj) in the cuspidal support. Jantzen proved that σ is square–integrable
if and only if σj is square–integrable, for all j = 1, . . . , k. For a self-dual unitary
cuspidal representation ρ of GL(nρ, F ) and an irreducible square-integrable repre-
sentation σ of Gn, we denote by σρ a representation whose cuspidal support is in
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S(ρ) (and σcusp) and which we just described. Because of that, we will often write
”the representation σ is (ρ)–strongly positive” meaning that the component σρ is
strongly positive (or sometimes, in this situation, we will just say “strongly posi-
tive”, without mentioning ρ). It will also be clear from the context when cuspidality
of σ actually means the cuspidality of σρ.

We fix a non–degenerate character χ of the unipotent radical of a Borel subgroup
of Gn defined over F. We fix such a choice of a Borel subgroup; this gives us standard
parabolic subgroups. When we say “generic representation ” it means χ–generic
representation.

By the work of Arthur it follows that the Jordan blocks introduced by Mœglin
and used in [9] to describe discrete series representations of classical groups Gn are
precisely the L-parameters of these discrete series. This is proved in [8], Theorem
1.3.1. For additional explanations regarding the unitary group case, one can check
the seventh and the eighth section of [5].

So, in other words, in this note we prove that, among all the discrete series of a
group Gn having the same Jordan block, the generic one has the smallest cuspidal
support. More precisely, up to the associativity, the parabolic subgroup on which
the cuspidal support lives, is the smallest for the generic representations in one
L–packet.

Beside this fact about Jordan blocks, to prove our claim, we only use some basic
facts about L-parameters (we even do not need some detail knowledge about it)
and the following result. ε factor is one of the ingredients in the admissible triples
used by Mœglin and Mœglin-Tadić ([9]) to describe discrete series representations.
Then, by Proposition 3.1 of [6] and Remark after it, the ε factor (when defined) on
each member of the Jordan block of a generic discrete series attains value 1 (cf. a
slight modification of this claim in the case of the split full even orthogonal group
is explained in the proof of Proposition 6.7 of [6]); it always attains value 1 on pairs
of appropriate elements in the Jordan block of a generic discrete series. We do
not need here any further details about this ε–factor; we only need the fact that if
it assumes value one on the subsequent elements in the Jordan block of a discrete
series, than this discrete series can be embedded in a certain induced representation
(cf. [9], Lemma 5.1). For a concise overview of construction of the discrete series
given in [9] we refer to Preliminaries section of [11].

From now on, let φ : WDF → Ĝn be a discrete L-parameter of a group Gn
(except in the case of unitary Gn); let Πφ be the corresponding L–packet. Here
WDF denotes the Weil-Deligne group WF × SL(2,C) of F, where WF is the Weil

group of F. In the case of unitary groups we just take, instead of Ĝn, the group
GL(N,C) for certain N, as explained in Proposition 7.3. of [5], also cf. Theorem
8.1. and the tenth section of [5]. We have

φ = ⊕(ρ,a)∈Jord(σ)ρ⊗ Va,

for some σ ∈ Πφ. Here ρ denotes an irreducible representation of WF (satisfy-
ing some properties we do not recall; we call it ”admissible”) and Va denotes the
unique algebraic representation of SL(2,C) of dimension a. By the Langlands cor-
respondence for the general linear groups, we can identify an irreducible admissible
m–dimensional representation ρ of WF with an irreducible unitary cuspidal repre-
sentation of GL(m,F ). This identification between the L-parameter φ and Jord(σ)
is the content of Theorem 1.3.1. of [8].
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2. The claim

Lemma 2.1. Let σ0 be a cuspidal generic representation belonging to an L–packet
φ of Gn. Then, all the other members of that packet are also cuspidal.

Proof. The form of the Jordan block (i.e., of the L-parameter) of a cuspidal repre-
sentation is described in the Introduction of [9]. Since σ0 is generic, the reducibility
of the representation ρνα o σ0 (where ρ ∼= ρ̃ is an irreducible cuspidal represen-
tation of GL(nρ, F ) and α ∈ R) is generic, i.e., we can have reducibility only if
α ∈ {0,± 1

2 ,±1}. This means that only reducibilities at α = ±1 contribute to the
L–parameter, i.e.

(2.1) φ↔ Jord(σ0) = ρ1 ⊗ V1 ⊕ ρ2 ⊗ V1 ⊕ · · · ⊕ ρk ⊗ V1.

Here ρi, i = 1, . . . , k is a self-dual, cuspidal representation of GL(ni, F ) (this defines
ni). Note that in order for φ to be a discrete parameter, all ρi have to be of the
same type (orthogonal or symplectic) and, if i 6= j then ρi � ρj . Let σ ∈ Πφ. The
inductive procedure of forming discrete series by starting from the strongly positive
ones and then adding two by two elements to the Jordan block is concisely described
in Preliminaries section of [11]. From (2.1) we see that Jordρ(σ) is at most singleton
for any self-dual cuspidal ρ. From the general construction of discrete series we have
just mentioned it follows that σ is itself necessarily strongly positive. We use the
notation Jordρ also used in [11]. Since Jordρi , i = 1, . . . , k consists of odd numbers
(i.e. all 1’s), by Theorem 1.1 (ii) of [11], and the discussion preceding it, it follows
that σ is necessarily cuspidal. �

Lemma 2.2. Let σ0 be a non-cuspidal, generic, strongly positive discrete series
representation belonging to an L–packet Πφ of Gn. Let P0 be a standard parabolic
subgroup attached to the cuspidal support of σ0. If σ ∈ Πφ has its cuspidal support
attached to a standard parabolic P, then, up to the associativity, P0 ⊂ P.

Proof. Assume that for some self-dual cuspidal GL-representation ρ we have |Jordρ(σ0)| ≥
2. Then, on one hand, since σ0 is strongly positive, the value of ε–factor on each
pair of subsequent elements in Jordρ(σ0) is equal to −1 (cf. the definition of the
triple of alternated type in before Remark 1.1 of [11]), and on the other hand, since
σ0 is generic, by Proposition 3.1 of [6], it has to be 1. Thus, if Jordρ(σ0) 6= ∅, then
Jordρ(σ0) is a singleton. Thus we have

φ↔ Jord(σ0) = ρ1 ⊗ Va1 ⊕ ρ2 ⊗ Va2 ⊕ · · · ⊕ ρk ⊗ Vak .

We denote the partial cuspidal support of σ0 by σcusp. This is also a generic repre-
sentation.

As mentioned above, the ε factor of a discrete series representation σ is defined
on some subset of Jord(σ) ∪ Jord(σ) × Jord(σ). Since we are dealing here with
several representations belonging to the same L–packet simultaneously, we denote
the ε–factor of σ acting on (ρ, a) by εσ,ρ(a).

If ai as even, then εσ0,ρi(ai) = 1 so that

(2.2) (σ0)ρi ↪→ δ[ρiν
1/2, ρiν

ai−1

2 ]o σcusp,

and if ai is odd, then |Jordρi(σ0)| = |Jordρi(σcusp)| = 1, so that Jordρi(σcusp) =
{1}. In that case,

(2.3) (σ0)ρi ↪→ δ[ρiν
1, ρiν

ai−1

2 ]o σcusp.
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Let σ ∈ Πφ be another discrete series with the partial cuspidal support σ′cusp. Then,
if ai is even with εσ,ρi(ai) = 1, then Jordφi(σ

′
cusp) = ∅ (cf. before Remark 1.1 in

[11]) and we again have

(σ)ρi ↪→ δ[ρiν
1/2, ρiν

ai−1

2 ]o σ′cusp.

If, for even ai, we have εσ,ρi(ai) = −1, then Jordφi(σ
′
cusp) = {2}, so that

(2.4) (σ)ρi ↪→ δ[ρiν
3/2, ρiν

ai−1

2 ]o σ′cusp.

If ai is odd, we have Jordφi(σ
′
cusp) = {1}, so that

(σ)ρi ↪→ δ[ρiν
1, ρiν

ai−1

2 ]o σ′cusp.

We denote by GL(n, F )f the product of f copies of GL(n, F ). The above discussion
(with Theorem 1.1 (ii) of [11]) gives us that the (standard) Levi subgroup attached
to the cuspidal support of σ0 is (up to the associativity) given by∏

aieven

GL(nρi , F )
ai
2 ×

∏
aiodd

GL(nρi , F )
ai−1

2 ×Gd.

Here σcusp is a representation of Gd. We see that the Levi subgroups attached to
the cuspidal support of σ can differ from the one for σ0 only in a situation (2.4). If
this case occurs for some i, that means that in the GL-part of the cuspidal support
of σ there is one less copy of GL(nρi , F ), for each such i, but then the classical part
of the Levi is Gd′ , where now d′ − d equals the sum of n′ρis for which this situation
occurs, and this proves our claim. �

Now we resolve the general case of the generic discrete series by induction over
number of additions of two elements of in the Jordan block by which this discrete
series is formed. As any discrete series of the groups Gn is formed starting from a
strongly positive discrete series of some smaller rank group Gn′ by adding two more
elements in the Jordan block ([9]), we have already proved our basic induction step.

Proposition 2.3. Let σ0 be a generic discrete series representation belonging to
an L–packet Πφ of Gn. Let P0 be a standard parabolic subgroup attached to the
cuspidal support of σ0. If σ ∈ Πφ has its cuspidal support attached to a standard
parabolic P, then, up to the associativity, P0 ⊂ P.

Proof. We can assume that σ0 is not strongly positive, so that there exists ρ such
that |Jordρ(σ0)| ≥ 2. Let σ ∈ Πφ. First, assume that there exists some ρ′ such
that |Jordρ′(σ)| ≥ 2 with the property that there exist two consequent numbers in
Jordρ′(σ), say a and b, with a < b satisfying εσ,ρ′(a)εσ,ρ′(b) = 1. This means that
there exists another discrete series, say σ′, with Jord(σ′) = Jord(σ)\{(ρ′, a), (ρ′, b)}
such that (cf. [9], Lemma 5.1)

σ ↪→ δ[ρ′ν−
a−1
2 , ρ′ν

b−1
2 ]o σ′.

On the other hand, since σ0 is generic we necessarily have εσ0,ρ′(a)εσ0,ρ′(b) = 1 and
then there exists a generic representation σ′0 which belongs to the same L–packet
as σ′(⇐⇒ the same Jordan block) such that

σ0 ↪→ δ[ρ′ν−
a−1
2 , ρ′ν

b−1
2 ]o σ′0.

Now the claim of the proposition directly follows from the analogous claim for σ′0
and σ′, which was our inductive assumption.
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If there is no such ρ′ (with such a and b), it means that σ is strongly positive. We
denote the partial cuspidal support of σ by σcusp. There exists a bijection between
Jordρ(σ) and Jordρ(σcusp) or Jordρ(σcusp)∪{0}, as explained before Remark 1.1 of
[11]. We denote this bijection by φρ. Note that Jordρ(σcusp) consists of consecutive
odd numbers (starting with 1) or consecutive even numbers (starting with 2). We
have

σ ↪→
∏
ρ

Jordρ(σ)6=∅

∏
a∈Jordρ(σ)

δ[ρν
φρ(a)+1

2 , ρν
a−1
2 ]o σcusp.

Note that this means that

(2.5) (σ)ρ ↪→
∏

a∈Jordρ(σ)

δ[ρν
φρ(a)+1

2 , ρν
a−1
2 ]o σcusp.

The important thing here is that φρ(a) ≥ 0. Assume that for certain ρ, |Jordρ(σ0)|
is even, say equal to {a1 < a2 < · · · < a2k}; let (σ0)cusp denote the partial cuspidal
support of σ0. This means that Jordρ((σ0)cusp) is empty, so that

(2.6) (σ0)ρ ↪→ δ[ρν−
a1−1

2 , ρν
a2−1

2 ]× · · · × δ[ρν−
a2k−1−1

2 , ρν
a2k−1

2 ]o (σ0)cusp.

If, on the other hand, |Jordρ(σ0)| is odd, say {a1 < a2 < · · · < a2k < a2k+1}, then
there is an embedding
(2.7)

(σ0)ρ ↪→ δ[ρν−
a1−1

2 , ρν
a2−1

2 ]×· · ·×δ[ρν−
a2k−1−1

2 , ρν
a2k−1

2 ]×δ[ρνα, ρν
a2k+1−1

2 ]o(σ0)cusp,

where α ∈ {12 , 1} (cf. (2.2),(2.3)). When we examine the number of GL(nρ, F )–
blocks appearing in (2.5), with the number of such a blocks in (2.6) or (2.7), we see
that in the latter (generic) cases, the number of such blocks is bigger and (σ0)cusp
is a representation of a group of a smaller rank than (σ)cusp. This concludes our
proof. �

2.1. The case of tempered, non-square integrable representations and
non-tempered case. Note that in L–packet containing a tempered, non-square
integrable representation, all other members of a packet are also non-square inte-
grable (cf. Corollary 8.2 of [9]). By the (desiderata) for the properties of Langlands

correspondence we know the following: let φ0 : WDF → Ĝn0
be a parameter cor-

responding to a generic discrete series representation (say, σ0). For unitary groups

we use GL(N0,C) instead of Ĝn0
, as explained before. Let φτ be an irreducible

tempered parameter for GL(k, F ) corresponding to an irreducible tempered repre-
sentation τ of GL(k, F ). Let P be a standard parabolic subgroup of Gn0+k with
the standard Levi subgroup isomorphic to GL(k, F )×Gn0 . Then, the L-packet Πφ

of Gn0+k corresponding to the parameter

φ = φτ + φ0 + φ̂τ

consists of (the isomorphism classes) of all the irreducible (tempered) constituents
of the representations

Ind
Gn0+k

P (τ ⊗ σ), where σ ∈ Πφ0 .

Since every tempered irreducible representation is obtained in this way, the state-
ment in the tempered case follows from the statement for the (generic) discrete
case.
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The case of the general (non-tempered) generic L-packet (i.e., the one containing
the generic representation for our fixed character χ) also follows from the general
properties of L-parameters.

So, let

φ = φτ1ν
s1 + · · ·+ φτrν

sr + φ0 + ̂(φτ1ν
s1 + · · ·+ φτrν

sr )

be a general generic L-packet. Here φτi , i = 1, . . . , r is an irreducible tempered
parameter corresponding to an irreducible tempered representation of GL(nτi , F )
and s1 ≥ s2 ≥ · · · > sr > 0 and let φ0 be a tempered (generic) parameter of Gn0 .
Then, Πφ consists of (the isomorphism classes) of all the Langlands quotients of
standard modules

τ1ν
s1 × τ2νs2 × · · · × τrνsr o π,

where π ∈ Πφ0 . Again, our claim is immediate.
We note it all together:

Theorem 2.4. Let π0 be a generic irreducible representation of Gn belonging to
an L–packet Πφ. Let P0 be a standard parabolic subgroup attached to the cuspidal
support of π0. If π ∈ Πφ has its cuspidal support attached to the standard parabolic
P, then, up to the associativity, P0 ⊂ P.
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