Pregled bibliografske jedinice broj: 896171
Segmentation of Depth Images into Objects Based on Local and Global Convexity
Segmentation of Depth Images into Objects Based on Local and Global Convexity // Proceedings of the European Conference on Mobile Robotics, Paris, France, 2017
Pariz, 2017. str. 16-22 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 896171 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Segmentation of Depth Images into Objects Based on Local and Global Convexity
Autori
Cupec, Robert ; Filko, Damir ; Nyarko, Emmanuel Karlo
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the European Conference on Mobile Robotics, Paris, France, 2017
/ - Pariz, 2017, 16-22
Skup
European Conference on Mobile Robotics (ECMR 2017)
Mjesto i datum
Pariz, Francuska, 06.09.2017. - 08.09.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
image segmentation, RGB-D images, object detection, convexity
Sažetak
An approach for object detection in depth images based on local and global convexity is presented. The approach consists of three steps: image segmentation into planar patches, greedy planar patch aggregation based on local convexity and segment grouping based on global convexity. The proposed approach improves upon existing similar methods, which use convexity as a cue for object detection, by detecting convex objects represented by multiple spatially separated image regions as well as hollow convex objects. The presented method is experimentally evaluated using a publicly available benchmark dataset and compared to two state-of-the art approaches. The experimental analysis demonstrates improvement achieved by high-level segment grouping based on global convexity.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ IP-2014-09-3155
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek