Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 896171

Segmentation of Depth Images into Objects Based on Local and Global Convexity


Cupec, Robert; Filko, Damir; Nyarko, Emmanuel Karlo
Segmentation of Depth Images into Objects Based on Local and Global Convexity // Proceedings of the European Conference on Mobile Robotics, Paris, France, 2017
Pariz, 2017. str. 16-22 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 896171 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Segmentation of Depth Images into Objects Based on Local and Global Convexity

Autori
Cupec, Robert ; Filko, Damir ; Nyarko, Emmanuel Karlo

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the European Conference on Mobile Robotics, Paris, France, 2017 / - Pariz, 2017, 16-22

Skup
European Conference on Mobile Robotics (ECMR 2017)

Mjesto i datum
Pariz, Francuska, 06.09.2017. - 08.09.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
image segmentation, RGB-D images, object detection, convexity

Sažetak
An approach for object detection in depth images based on local and global convexity is presented. The approach consists of three steps: image segmentation into planar patches, greedy planar patch aggregation based on local convexity and segment grouping based on global convexity. The proposed approach improves upon existing similar methods, which use convexity as a cue for object detection, by detecting convex objects represented by multiple spatially separated image regions as well as hollow convex objects. The presented method is experimentally evaluated using a publicly available benchmark dataset and compared to two state-of-the art approaches. The experimental analysis demonstrates improvement achieved by high-level segment grouping based on global convexity.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Emmanuel Karlo Nyarko (autor)

Avatar Url Robert Cupec (autor)

Avatar Url Damir Filko (autor)

Citiraj ovu publikaciju:

Cupec, Robert; Filko, Damir; Nyarko, Emmanuel Karlo
Segmentation of Depth Images into Objects Based on Local and Global Convexity // Proceedings of the European Conference on Mobile Robotics, Paris, France, 2017
Pariz, 2017. str. 16-22 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Cupec, R., Filko, D. & Nyarko, E. (2017) Segmentation of Depth Images into Objects Based on Local and Global Convexity. U: Proceedings of the European Conference on Mobile Robotics, Paris, France, 2017.
@article{article, author = {Cupec, Robert and Filko, Damir and Nyarko, Emmanuel Karlo}, year = {2017}, pages = {16-22}, keywords = {image segmentation, RGB-D images, object detection, convexity}, title = {Segmentation of Depth Images into Objects Based on Local and Global Convexity}, keyword = {image segmentation, RGB-D images, object detection, convexity}, publisherplace = {Pariz, Francuska} }
@article{article, author = {Cupec, Robert and Filko, Damir and Nyarko, Emmanuel Karlo}, year = {2017}, pages = {16-22}, keywords = {image segmentation, RGB-D images, object detection, convexity}, title = {Segmentation of Depth Images into Objects Based on Local and Global Convexity}, keyword = {image segmentation, RGB-D images, object detection, convexity}, publisherplace = {Pariz, Francuska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font