Pregled bibliografske jedinice broj: 894295
The Napoleon-Barlotti theorem in hexagonal quasigroups
The Napoleon-Barlotti theorem in hexagonal quasigroups // 6th Croatian Mathematical Congress
Zagreb, Hrvatska, 2016. (predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 894295 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Napoleon-Barlotti theorem in hexagonal quasigroups
Autori
Vidak, Stipe ; Bombardelli, Mea
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
6th Croatian Mathematical Congress
Mjesto i datum
Zagreb, Hrvatska, 14.06.2016. - 17.06.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
IM-quasigroup, hexagonal quasigroup, regular triangle, regular hexagon
Sažetak
Hexagonal quasigroups are idempotent medial quasigroups in which the additional identity of semisymmetricity, a b ⋅ a = b ab⋅a=b, holds. The famous Napoleon-Barlotti theorem of Euclidean geometry says: The centres of the regular n n- gons constructed on the sides of an affine regular n n-gon form a regular n n-gon. In this talk the concepts of parallelogram, regular triangle and its centre, regular hexagon and its centre and affine regular hexagon are introduced in hexagonal quasigroups. Some illustrations of these concepts are given in the model C ( q ) C(q), where q q is a solution of the equation q 2 − q + 1 = 0 q2−q+1=0. The Napoleon-Barlotti theorem in the cases n = 3 n=3 and n = 6 n=6 is stated and proved in a general hexagonal quasigroup.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Agronomski fakultet, Zagreb