Pregled bibliografske jedinice broj: 892794
Multi-view low-rank sparse subspace clustering
Multi-view low-rank sparse subspace clustering // Pattern recognition, 73 (2018), 247-258 doi:10.1016/j.patcog.2017.08.024 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 892794 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multi-view low-rank sparse subspace clustering
Autori
Brbić, Maria ; Kopriva, Ivica
Izvornik
Pattern recognition (0031-3203) 73
(2018);
247-258
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Subspace clustering ; Multi-view data ; Low-rank ; Sparsity ; Alternating direction method of multipliers ; Reproducing kernel Hilbert space
Sažetak
Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a joint subspace representation by constructing affinity matrix shared among all views. Relying on the importance of both low-rank and sparsity constraints in the construction of the affinity matrix, we introduce the objective that balances between the agreement across different views, while at the same time encourages sparsity and low-rankness of the solution. Related low-rank and sparsity constrained optimization problem is for each view solved using the alternating direction method of multipliers. Furthermore, we extend our approach to cluster data drawn from nonlinear subspaces by solving the corresponding problem in a reproducing kernel Hilbert space. The proposed algorithm outperforms state-of-the-art multi- view subspace clustering algorithms on one synthetic and four real-world datasets.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus