Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 890061

A Local Entropy-Based Algorithm for Information Content Extraction from Time-frequency Distributions of Noisy Signals


Saulig, Nicoletta; Milanović, Željka; Ioana, Cornel
A Local Entropy-Based Algorithm for Information Content Extraction from Time-frequency Distributions of Noisy Signals // Digital signal processing, 70 (2017), 155-165 doi:10.1016/j.dsp.2017.08.005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 890061 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Local Entropy-Based Algorithm for Information Content Extraction from Time-frequency Distributions of Noisy Signals

Autori
Saulig, Nicoletta ; Milanović, Željka ; Ioana, Cornel

Izvornik
Digital signal processing (1051-2004) 70 (2017); 155-165

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Time–frequency distributions ; Segmentation ; K-means ; Local Rényi entropy ; Threshold

Sažetak
In this paper, an automatic adaptive method for identification and separation of the useful information content, from the background noise of time–frequency distributions (TFD) of multicomponent nonstationary signals, is presented. The method is based on an initial segmentation of the TFD information content by the K-means clustering algorithm, that partitions the initial data set in order to obtain K classes containing elements with similar amplitudes. It is shown that the local Rényi entropy (LRE) can accurately distinguish classes containing noise from classes with the useful information content, as a consequence of their basic structural differences in the time–frequency plane. Simulations are run to compare the performance of the proposed adaptive algorithm for blind separation of useful information from background noise (i.e. blind amplitude threshold) and non- adaptive (hard) amplitude TFD threshold procedures. Simulation results indicate that the proposed method performs better or closely to the best of five blindly chosen hard thresholds. The limitation of efficient hard-thresholding is the need of previous knowledge of the signal's structure and SNR or visual evaluation.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Tehnički fakultet, Rijeka

Profili:

Avatar Url Željka Tomasović (autor)

Avatar Url Nicoletta Saulig (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Saulig, Nicoletta; Milanović, Željka; Ioana, Cornel
A Local Entropy-Based Algorithm for Information Content Extraction from Time-frequency Distributions of Noisy Signals // Digital signal processing, 70 (2017), 155-165 doi:10.1016/j.dsp.2017.08.005 (međunarodna recenzija, članak, znanstveni)
Saulig, N., Milanović, Ž. & Ioana, C. (2017) A Local Entropy-Based Algorithm for Information Content Extraction from Time-frequency Distributions of Noisy Signals. Digital signal processing, 70, 155-165 doi:10.1016/j.dsp.2017.08.005.
@article{article, author = {Saulig, Nicoletta and Milanovi\'{c}, \v{Z}eljka and Ioana, Cornel}, year = {2017}, pages = {155-165}, DOI = {10.1016/j.dsp.2017.08.005}, keywords = {Time–frequency distributions, Segmentation, K-means, Local R\'{e}nyi entropy, Threshold}, journal = {Digital signal processing}, doi = {10.1016/j.dsp.2017.08.005}, volume = {70}, issn = {1051-2004}, title = {A Local Entropy-Based Algorithm for Information Content Extraction from Time-frequency Distributions of Noisy Signals}, keyword = {Time–frequency distributions, Segmentation, K-means, Local R\'{e}nyi entropy, Threshold} }
@article{article, author = {Saulig, Nicoletta and Milanovi\'{c}, \v{Z}eljka and Ioana, Cornel}, year = {2017}, pages = {155-165}, DOI = {10.1016/j.dsp.2017.08.005}, keywords = {Time–frequency distributions, Segmentation, K-means, Local R\'{e}nyi entropy, Threshold}, journal = {Digital signal processing}, doi = {10.1016/j.dsp.2017.08.005}, volume = {70}, issn = {1051-2004}, title = {A Local Entropy-Based Algorithm for Information Content Extraction from Time-frequency Distributions of Noisy Signals}, keyword = {Time–frequency distributions, Segmentation, K-means, Local R\'{e}nyi entropy, Threshold} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font