Pregled bibliografske jedinice broj: 886598
Optimizing the detection of characteristic waves in ECG based on exploration of processing steps combinations
Optimizing the detection of characteristic waves in ECG based on exploration of processing steps combinations // IFMBE Proceedings, volume 65 / Eskola, Hannu ; Väisänen, Outi ; Viik, Jari ; Hyttinen, Jari (ur.).
Tampere: Springer, 2017. str. 928-931 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 886598 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Optimizing the detection of characteristic waves in ECG based on exploration of processing steps combinations
Autori
Friganović, Krešimir ; Jović, Alan ; Kukolja, Davor ; Cifrek, Mario ; Krstačić, Goran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
IFMBE Proceedings, volume 65
/ Eskola, Hannu ; Väisänen, Outi ; Viik, Jari ; Hyttinen, Jari - Tampere : Springer, 2017, 928-931
ISBN
978-981-10-5121-0
Skup
Joint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC)
Mjesto i datum
Tampere, Finska, 11.06.2017. - 15.06.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
ECG, characteristic waves, detection, algorithms, biomedical signal analysis
Sažetak
In this paper, algorithms for detection of characteristic waves in ECG are examined and modified. We distinguished four processing steps of detection algorithms: noise and artefacts reduction, transformations, fiducial marks selection of wave candidates, and decision rule. Several algorithms for detection of QRS, P, and T waves are explored through combinations of processing steps, in order to achieve accurate detection results. Algorithms are tested on public available ECG databases with both QRS and P and T waves annotations. We found that, depending on the database, the combination of Sun Yan's MMF or MMD methods with Elgendi's algorithm works best for QRS detection (Se = 99.77% +P = 99.72% for MMF on MIT-BIH Arrhythmia Database and Se = 99.90% +P = 99.89% for MMD on QT Database), while P and T waves were best detected using only Elgendi's algorithm (P waves: Se = 60.84% +P = 59.61%, T waves: Se = 88.79% +P = 93.55% on MIT-BIH Arrhythmia Database). Our work shows that combining the best proposed methods in literature may lead to improvements in ECG waves detection, although P and T waves detection is still less than satisfactory and warrants further research.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2014-09-6889 - Programski sustav za paralelnu analizu više heterogenih nizova vremenskih podataka s primjenom u biomedicini (MULTISAB) (Jović, Alan, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Sveučilište Libertas
Profili:
Mario Cifrek
(autor)
Goran Krstačić
(autor)
Krešimir Friganović
(autor)
Alan Jović
(autor)
Davor Kukolja
(autor)