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Abstract—A modular open source real-time simulation
environment for linear model predictive control (LMPC)
of line following at a constant depth is developed for
underactuated marine vehicles. Two-stage tuning method of
MPC’s parameters is implemented as an extension of this
simulator. MPC is used for high level control, i.e. setting the
yaw rate reference, which is then tracked by the low level
PID controllers. Simulation and experimental results show
good performance of our MPC-PID control scheme when
compared to ordinary PID controllers using Lyapunov-based
guidance law.

I. INTRODUCTION

In marine robotics, line following motion control is
very important in missions such as sea floor sonar
scanning. Lawnmower is one of the most commonly
used solutions for 2D coverage problem, and is used as a
reference path to be followed by marine vehicles. A com-
prehensive overview of the path following approaches
(e.g. backstepping, Lyapunov control functions, adaptive
control, disturbance rejection, and line-of-sight approach,
etc.) is given in [1] and in the references therein.

Our ongoing research addresses the concept of an
adaptive sea floor sonar scanning algorithm. The adapta-
tion is reflected in steering the vehicle to scan some inter-
esting areas in more detail, while skipping areas which
are less interesting, thus maximizing some informational
gain measure. This means that not all lawnmower legs
need to be traversed along their whole length.
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With this in mind, we plan to use model predictive
control (MPC) as a control methodology. MPC has been
used for path following problems in [2]. It has also
been used for autonomous ground vehicles (AGVs) in
problems formulated in a similar fashion as our above
formulated research goal, namely in [3]. The first part
of solving this problem is to make MPC framework for
basic straight line following, which is presented here.

In this paper we present a real-time linear MPC
(LMPC)-based motion planning environment for under-
actuated marine vehicles’ (e.g. rudder-based vehicles)
line following at a constant depth with assumed con-
stant disturbance. LMPC is chosen in order to reduce
the execution time of the used optimization algorithm,
bearing in mind the real-time implementation for the
experiments. Simulation environment was made by in-
tegrating ACADO toolbox, [4], with ROS environment.
The developed environment has an MPC tuning module,
which runs simulations with the given varied MPC pa-
rameter values, and based on the metrics presented in [5]
and extended in this paper, assesses which parameter set
performs the best.

Simulation results show the success of this tuning
methodology, and also good performance of the resultant
MPC-based motion planning framework. Results of the
experiments both on the surface and underwater are
given as a validation of the simulation results. They are
are consistent with the simulation results, with some
discrepancies caused by real-world factors.

This paper is organized as follows: kinematic model
for line following problem in the presence of an un-
known disturbance is given in Section II. In Section III,
MPC framework for solving this problem is described.
Simulation results are presented in Section IV. Results of



on-sea surface and underwater experiments are given in
Section V.

II. KINEMATIC MODEL OF LINE FOLLOWING WITH
CONSTANT DISTURBANCE

Let us assume that we need to use some underac-
tuated marine vehicle for a sea floor sonar scanning
mission. Also, let us assume that for accomplishing that
mission, the vehicle should move only in a constant
depth plane. In this context, we define underactuated-
ness of the vehicle as its inability to directly control
pitch, roll, and sway. Heave motion is neglected since we
are assuming that the vehicle is already at the desired
depth. Moving in the marine environments necessarily
means dealing with different kinds of disturbances, i.e.
wind and waves for missions on the surface, sea current
for underwater missions. These disturbances can also
represent unmodeled system dynamics. Let us further-
more assume that these disturbances are constant, but
not observable, and denote them as ν. Since we are
assuming a sonar scanning mission, it is preferable for
the vehicle to maintain a constant surge speed w.r.t.
water Ur > 0, Ur > ν,Ur = const., while the change
in heading is controlled by yaw rate r.

This leaves us with a task to control yaw rate in such
a way that the vehicle follows the straight lines of the
desired lawnmower pattern, i.e. minimizing the distance
to the current line (cross-track error) d. Also, heading
error β = ψ−ψL, i.e. the difference between the vehicle’s
heading ψ, and current line’s heading ψL, should be
minimized.

With all the above assumptions taken into account,
kinematic model of line following in a horizontal plane
is given as

ḋ = Ur sinβ + ν ' Urβ + ν (1)

β̇ = r (2)

ḋint = d (3)

where the symbol ' denotes linear approximation for
small values of β [6].

The linearized kinematic model of line following given
by (1) and (2), is thus extended with an additional state
given by (3), which represents the integral ofthe cross-
track error. This model extension is a common practice in
robust MPC schemes with disturbance rejection, as in [7],
which enables stabilization of the system around the
setpoint even in the presence of an external disturbance.

Furthermore, vehicle’s position and orientation [x y ψ]
in the earth-fixed frame 〈e〉 are expressed as

ẋ = Ur cosψ + νx (4)
ẏ = Ur sinψ + νy (5)

ψ̇ = r (6)

where νx, νy are x and y components of the current
speed, respectively [6].

III. LINEAR MODEL PREDICTIVE CONTROL FRAMEWORK
FOR LINE FOLLOWING

In order to minimize the computation complexity, and
be able to implement our control framework on a real
marine vehicle, in our approach we used linear MPC as a
high level yaw rate controller. Low level PID controllers
are delegated to control constant surge speed throughout
the whole mission, but also to track the reference yaw
rate set by the high level MPC controller.

In order to solve control optimization in a MPC
fashion, we used ACADO toolbox [4], as the control
optimization tool. Optimization was even more sped up
by the use of RealTimeAlgorithm class, which enabled
us to make MPC controller ready to be used in real-time.
MPC framework which has been used is given here. Cost
function J is expressed as

J =

∫ ti+Tp

ti

(
Kdd

2(τ)+Kββ
2(τ)+Kdint

dint
2(τ)

)
dτ (7)

subject to

−π ≤β(τ) ≤ π, ∀τ ∈ [ti, ti + Tp] (8)
−20◦/s ≤ r(τ) ≤ 20◦/s, ∀τ ∈ [ti, ti + Tp] (9)

where ti = kTs, k ∈ N0 is initial time of the predic-
tion horizon which lasts for Tp[s], with sampling time
Ts = 125ms. Another MPC design parameter in ACADO
was Nsteps parameter. This parameter implicitly sets the
duration of the control horizon, since Tc = NstepsTs[s]
holds. In the rest of this paper, terms Nsteps and Tc will
be used interchangeably.

IV. SIMULATION RESULTS

Tuning of MPC controller is often done ad hoc, choos-
ing its parameters which give just good enough results.
Our idea was to vary MPC controller’s parameters (Tp,
Nsteps, Kd, Kβ , and Kdint

) for the particular model and
environment setting in some relatively wide, but sen-
sible range, simulate the system in the closed-loop, and
asses the quality of the system performance numerically.
Problem space for tuning all the parameters at the same
time was too big, so we divided it into two stages of
parameter variation. In the first simulation stage, Tp and
Nsteps were varied, and in the second stage Kd, Kβ , and
Kdint

were varied.
It is important to note here that the set value of the

surge speed for the vehicle in the simulations was Ur =
0.5m/s, and that the disturbance was simulated as ν =
νx = 0.2m/s, νy = 0. Steady-state ε-zone is defined as
ε = 0.1m.

A. Indices for line following performance evaluation

Since in the parameter variation simulations many
responses get generated, it is of our interest to grade
these responses in some objective way. This was done
using the methodology proposed in [5]. It enabled us to



analyze and quantify performance of different parts of
the vehicle’s path towards convergence to the desired
line, i.e. turn phase, approach phase, and settling and
steady-state phase. Graphical explanation of all the pa-
rameters in all three phases is given in Fig. 1.

As defined in [5], line following performance during
the turn phase is parametrized by H||[m], A1[m2], and
H⊥[m], see Fig. 1.

The second phase is the so-called path approach
phase, and it is parametrized by A2[m2], χ[m/s], and
χmax[m/s], see Fig. 1. Here χ[m/s] denotes the mean of
cross-track error rate normalized by the duration of the
approach phase, while χmax[m/s] is the maximum value
of cross-track error rate during the approach phase.

The third and the last phase is the settling and
steady-state phase, in which cross-track error is within
some ε-zone around the followed path. This phase is
parametrized by four parameters, namely H2[m], A∗3[m],
ts[s], ∆r[deg /s], see Fig. 1. Settling time ts has been
added as an additional analysis parameter in this paper.
Also, instead of computing the rudder stress R as in [5],
in this paper we computed yaw rate stress index ∆r, and
thus implicitly the energy consumption.

In addition to using the quantitative analysis of line
following from [5], in this paper all of the indices
quantifying the response quality were scaled relative to
the minimum/maximum value of that index throughout
all simulations. The scaling was done so that we could
easily compare system response qualities from our sim-
ulations, and make some generalized weighted cumu-
lative performance function denoted as Σ. The value of
this performance measure can tell us for which MPC
parameter n-tuple we get the best control performance.

Scaling by the minimum value of the performance
index was done due to the fact that smaller val-
ues of H||, A1, H⊥, A2, H2, A

∗
3, ts,∆r mean better sys-

tem performance. Conversely, scaling by the maxi-
mum value was done due to the fact that greater
values of performance indices χ and χmax, and also
of the overall performance measure Σ, mean better
system performance. If we generalize parameter p as
p ∈ {H||, A1, H⊥, A2, χ, χmax, H2, A

∗
3, ts,∆r,Σ}, then the

scaling by the minimun value is given by

pij,s =
min{p1j , p2j , · · · , pNsimsj}

pij
100[%] (10)

and scaling by the maximum value of the performance
index is given by

pij,s =
pij

max{p1j , p2j , · · · , pNsimsj}
100[%] (11)

where i = 1, Nsims denotes the index of the simulation,
j = 1, Nparams denotes the index of the performance
index, Nsims denotes the overall number of conducted
simulations, i.e. the number of specific parameters’ com-
binations, and Nparams denotes the number of perfor-
mance indices evaluated. The overall performance score

      TURN      PATH
APPROACH

SETTLING
   STATE

STEADY
  STATE

Fig. 1: Performance indices of path following [5].

Σi of one set of varied MPC parameters is calculated as
a weighted sum of all scaled performance indexes for
i-th simulation, given by

Σi =

Nparams∑
j=1

wjpij,scaled (12)

where wj denotes the weight, i.e. the importance of
j-th parameter. In this paper we set all weights as
wj = 1,∀j = 1, Nparams. After this, all the perfor-
mance scores are scaled by the maximum principle given
by (11).

B. Choosing prediction and control horizon
The first stage of parameter variation procedure was to

vary parameters Tp and Nsteps (thus implicitly varying
the control horizon Tc). Prediction horizon duration Tp
has a very important role in the overall stability of the
controlled system in closed-loop. Apart from varying Tp
and Nsteps, we also varied the initial distance of the
vehicle w.r.t. the line to follow, in order to choose Tp
such that the system stabilizes in both cases.

On the other hand, control horizon duration Tc can
cause the system to destabilize if Tc is chosen too short.
If Tc is chosen too long, it causes faster response in
most cases, but also an additional control optimization
burden. Large value of Tc can also cause the controls to
change too rapidly, which can lead to shortened life of
actuators in the long term.

The first set of simulations was conducted with
varying Tp ∈ {1, 5, 10, 20, 30, 60}[s] and Nsteps ∈
{1, 5, 10, 15, 20}. The initial conditions of controller in-
ternal system model were d0 = 0, β0 = π, dint0 = 0.
For these experiments cost function parameters were set
as Kd = 1, Kβ = 0.001, and Kdint

= 0.01. For each
Tp the best response with corresponding Tc has been
shown in Fig. 2a. The second set of initial conditions
was d0 = 5, β0 = π, dint0 = 0. The corresponding best
system responses for each Tp are shown in Fig. 2b.

It can be noted that longer Tp cause the response to
have a larger overshoot (see also H2 column of Table I).
Also, shorter Tp caused the system to have a longer
settling time, which is apparent in ts column of Table I.

It is interesting to note that the vehicle’s heading in
the steady-state phase is not aligned with the followed
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(a) Vehicle’s path in a constant depth plane during line following
maneuver . Reference line (dashed black line). Initial conditions
d0 = 0[m], and β0 = π[rad]. Heading of the vehicle (black
triangles).
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(b) Vehicle’s path in a constant depth plane during line following
maneuver . Reference line (dashed black line). Initial conditions
d0 = 5[m], and β0 = π[rad]. Heading of the vehicle (black
triangles).
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Fig. 2: Simulation results for for various Tp and Nsteps
values.

line’s heading, see Fig. 2a and 2b. This is due to the fact
that the vehicle orients itself at an angle to compensate
against the current at the assumed constant surge speed.

For the sake of brevity, we did not include the turn
phase indices values here. We found that all three turn
phase performance indices have the same values H|| =
1.46m, A1 = 8.49m2, and H⊥ = 1.17m, invariant to the
chosen stabilizing MPC parameters. The vehicle tries to
turn as fast as possible in this phase, so these indices
depend only on the surge speed and yaw rate bounds.

Table I shows the unscaled performance indices of the
approach, and steady-state phase, but also the overall
scaled score of each Tp − Nsteps combination. It can be
noted that the score does not grow with the increase of
Tp, but is some nonlinear function of Tp. This leads to
the conclusion that longer prediction horizon does not

TABLE I: Prediction and control horizon variation. Quan-
titative analysis of response quality of the approach and
steady-state phase, control stress, and final score. Initial
conditions: d0 = 0, β0 = π, dint0 = 0. For # referencing
to Tp and Nsteps values see Fig. 2a legend.

# A2 χ χmax H2 A∗
3 ts ∆r Σi,s

1 2.984 0.039 0.069 0.88 0.105 56.5 4.54 77.8
2 2.986 0.038 0.065 0.72 0.048 50.8 1.31 86.9
3 2.988 0.038 0.064 0.86 0.026 39.8 1.19 92.9
4 3.016 0.037 0.059 0.96 0.018 37.0 1.12 97.3
5 3.105 0.036 0.053 1.09 0.016 34.0 0.86 100
6 3.283 0.033 0.048 1.21 0.019 38.6 0.72 94.5

always guarantee better MPC controller performance.
Also, it can be noted that as the fraction Tc/Tp

increases, the vehicle approaches the line faster. This
means that, as Tp gets shorter, the system cannot predict
its future trajectories far in time, so as Tc takes up
a bigger part of Tp, MPC generates more aggressive
controls (see ∆r column of Table I and Fig. 2c) which in
turn cause the vehicle to approach the line faster. Based
on Table I, we chose Tp = 30s, and Nsteps = 10.

Another thing which we were trying to asses empir-
ically, was the estimation of the optimization duration
in each sampling period. It is important to note here
that the machine which was used for simulations had an
Intel R© CoreTM i5-3210M processor with clock frequency
of 2.5 − 3.1GHz, and 6GB of RAM. In Fig. 2d it can
be seen that the distributions of execution times of
simulations for each pair (Nsteps, Tp) have been repeated
10 times to gain some statistical credibility. It is evident
that the complexity, i.e. execution time is dependent
only on the number of control steps being optimized
at each MPC iteration For Nsteps = 10, execution times
for any tested Tp are under 5ms , which is still far
below the value of sampling time Ts = 125ms. Even
with the transition to real system’s lower performance
on-board computer, this way we could make sure that
the execution time of OCP solver will be real-time.

C. Choosing cost function parameters

After choosing prediction horizon Tp and control
horizon Tc, the next step was to choose the param-
eters of cost function J given by (7). Again, this
was done through parameter variation analysis for
Kd ∈ {0.01, 0.1, 1, 2, 5}, Kβ ∈ {0.001, 0.01, 0.1, 2, 5},
and Kdint ∈ {0.001, 0.01, 0.1, 1, 2}. The best 6 resulting
responses are chosen, and shown in Fig. 3.

Table II shows the unscaled performance indices of
approach and steady-state phase, but also the overall
score of each Tp−Nsteps combination. Based on Table II,
we chose Kd = 1.0, Kβ = 5.0, and Kdint

= 0.001.
Indeed, the response with these parameters converges
to the steady-state much faster than most of the other
considered responses, see Fig. 3. Also, its overshoot over
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Fig. 3: Cost function paratemers variation for Tp = 30s
and Nsteps = 10. Initial conditions d0 = 0[m], and β0 =
π[rad]. Reference line (dashed black line). Heading of the
vehicle (black triangles).

TABLE II: Cost function parameters variation. Quanti-
tative analysis of response quality of the approach and
steady-state phase, control stress, and final score. Initial
conditions: d0 = 0, β0 = π, dint0 = 0. For # referencing
to Kd, Kβ , and Kdint

value see Fig. 3 legend.

# A2 χ χmax H2 A∗
3 ts ∆r Σi,s

1 3.21 0.0334 0.048 1.42 0.01 46.0 0.7 94.5
2 3.47 0.0302 0.041 1.36 0.0094 47.3 0.6 94.9
3 3.07 0.0362 0.056 1.33 0.009 34.8 0.9 99.8
4 3.08 0.0358 0.054 1.19 0.0133 30.1 0.9 95.5
5 3.09 0.0355 0.054 1.22 0.0097 31.5 0.8 100
6 3.04 0.0365 0.058 1.45 0.0089 38.6 1.1 98.1

the line is second smallest among all other responses
taken into account.

V. EXPERIMENTAL RESULTS

A. Experiment setup
Validation of the simulation results was conducted in

a series of on-sea experiments in October 2016 in Biograd
na Moru. We used Hybrid AUV/ROV robotic platform
e-URoPe (e-Underwater Robotic Pet), developed at CNR-
ISSIA (Genoa, Italy) in ROV mode for the experiments.
E-URoPe was used in an underactuated mode. Heave
and surge motions were controlled by its existing con-
trollers, while its low level controllers were used for
tracking yaw rate reference which MPC controller sets.

Since the experiments were conducted in shallow wa-
ter, both on surface and underwater, sea current effects
were negligible, so we had to exclude dint state from
the MPC controller’s system model. This has also greatly
reduced the oscillations of the vehicle around the desired
lines it followed. Due to the mentioned simplification of
the model, parameter Kβ was set to Kβ = 0.1 in order to
get better line following. Constant surge speed was set to
Ur = 0.2m/s, and yaw rate was limited to |r| ≤ 12 deg /s
in order to improve the maneuverability of the ROV. Low
level yaw rate controller for MPC’s yaw rate reference
tracking was a P controller with Kp = 0.4.

During both surface and underwater experiments our
approach was compared to a guidance scheme presented

in [8]. This scheme is based on a Lyapunov-based virtual-
target path-following algorithm for setting the heading
reference, combined with a PID heading controller which
controls yaw torque.

B. Surface experiments

The first set of experiments was conducted on sea
surface, during which e-URoPe ROV used GPS for lo-
calization. Fig. 4a shows the path of the e-URoPe while
following the desired lawnmower pattern, controlled by
MPC-PID approach (red), and the above mentioned LCF-
PID approach (blue). It is interesting to note that in both
cases the vehicle oscillates around the desired lines in the
steady-state phase. These oscillations have an amplitude
smaller than 0.5m, which is a value of the same order of
magnitude as the GPS precision class.

Reference yaw rate generated by the MPC controller
(blue) and the estimated yaw tracking by the low level
PID controller (red) are given in Fig. 4b. It is obvious
that all the reference yaw rate values are within the set
bounds, and also that the tracking is very good, with
only a small latency that is tolerable.

C. Underwater experiments

Underwater experiments were conducted with the
same lawnmower pattern at a depth of 1.4m, where e-
URoPe ROV used USBL for localization. Lawnmower
line following performance of the MPC-PID approach
(red), and LCF-PID approach (blue) is shown in Fig. 5a.
Compared to the surface experiments, the performance
of line following underwater is much better. There are
no oscillations around the lines in the steady-state phase,
only a few position estimation outliers.Yaw rate tracking
(red) of the yaw rate reference computed by MPC con-
troller (blue) is given in Fig. 5b. The performance of the
P-type tracking controller is very fast and precise.

Analyzing the experimental results from Fig. 4a and
5a, and comparing MPC-PID approach with LCF-PID
approach from [8], one could say that the difference is
negligible. However, if Fig. 4b and 5b are analyzed, it can
be noted that both the reference and estimated yaw rate
values are within the set bounds. On the other hand, esti-
mated yaw rate values of LCF-PID approach for surface
and underwater experiments, shown in Fig. 6, violated
the set bounds even by 50% which if significant. Since
LCF-PID approach from [8] controls yaw torque, yaw
rate could not be directly controlled and thus saturated.

VI. CONCLUSION AND FUTURE WORK

LMPC has shown good performance when applied
to line following problem for underactuated marine
vehicles in the presence of disturbance. It generates op-
timized and feasible motions for the vehicle to perform,
while taking into account all the constraints on the states
and controls. These motions can be kinematically, but
also dynamically feasible, depending on the model of th
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Fig. 4: Surface experiments.

vehicle used. LMPC was used as a high level controller,
optimizing the yaw rate reference, while low level PID
controllers were used to track the yaw rate reference,
and also maintain a constant surge speed and depth.

We made a modular real-time open source simulator
by joining ROS framework with ACADO toolbox for
MPC. Tuning of MPC controller’s parameters is done
in an automated and two-stage fashion. Human oper-
ator needs only to set the parameter variation values,
while all the simulations, as well as the performance
assessment of each parameter n-tuple is using a pre-
programmed methodology. Simulation and experimental
results show good performance of MPC when compared
to PID controllers, especially in the case of constraints
satisfaction.
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controlled by MPC (black triangles).
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(b) MPC controller. Tracking (red) of the reference yaw rate
(blue). Bounds of the yaw rate values (red dash-dot).

Fig. 5: Underwater experiments.
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Fig. 6: Estimated yaw rate signals caused by the use
of PID controller. Surface experiment (red), underwater
experiment (blue). Bounds of the yaw rate values (red
dash-dot).
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