Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 882497

Critical Level of Data Imbalance For Machine Learning Algorithms In Software Defect Prediction


Mauša, Goran; Dalbelo Bašić, Bojana; Galinac Grbac, Tihana
Critical Level of Data Imbalance For Machine Learning Algorithms In Software Defect Prediction // Proceedings of IWDS 2016 / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb: Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2016. str. 36-36 (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 882497 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Critical Level of Data Imbalance For Machine Learning Algorithms In Software Defect Prediction

Autori
Mauša, Goran ; Dalbelo Bašić, Bojana ; Galinac Grbac, Tihana

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Proceedings of IWDS 2016 / Lončarić, Sven ; Šmuc, Tomislav - Zagreb : Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2016, 36-36

Skup
First International Workshop on Data Science

Mjesto i datum
Zagreb, Hrvatska, 30.11.2016

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
critical level ; machine learning ; software defect prediction

Sažetak
The increasing complexity of software systems is extending the verification activities and increasing the development cost. Software defect predictions aims to improve the allocation of verification resources. A major problem in this field is that the software defects are unequally distributed within the software system. The majority of defects is situated in the smaller part of the system. This problem is also known as the data imbalance problem and it is an inherent feature in this domain. High levels of data imbalance are known to deteriorate the performance of machine learning algorithms. This paper proposes a method for establishing the critical level of data imbalance for machine learning algorithms. The proposed method is based on Arrow-Pratt metric and it enables us to determine above which level of data imbalance certain machine learning algorithms become incapable of performing their defect prediction task. The benefit of using this method is to give the practitioners guidelines for finding the most appropriate machine learning method for the level of imbalance that they are facing in practice and to improve verification and development strategies of complex software systems.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Tehnički fakultet, Rijeka


Citiraj ovu publikaciju:

Mauša, Goran; Dalbelo Bašić, Bojana; Galinac Grbac, Tihana
Critical Level of Data Imbalance For Machine Learning Algorithms In Software Defect Prediction // Proceedings of IWDS 2016 / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb: Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2016. str. 36-36 (poster, međunarodna recenzija, sažetak, znanstveni)
Mauša, G., Dalbelo Bašić, B. & Galinac Grbac, T. (2016) Critical Level of Data Imbalance For Machine Learning Algorithms In Software Defect Prediction. U: Lončarić, S. & Šmuc, T. (ur.)Proceedings of IWDS 2016.
@article{article, author = {Mau\v{s}a, Goran and Dalbelo Ba\v{s}i\'{c}, Bojana and Galinac Grbac, Tihana}, year = {2016}, pages = {36-36}, keywords = {critical level, machine learning, software defect prediction}, title = {Critical Level of Data Imbalance For Machine Learning Algorithms In Software Defect Prediction}, keyword = {critical level, machine learning, software defect prediction}, publisher = {Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Mau\v{s}a, Goran and Dalbelo Ba\v{s}i\'{c}, Bojana and Galinac Grbac, Tihana}, year = {2016}, pages = {36-36}, keywords = {critical level, machine learning, software defect prediction}, title = {Critical Level of Data Imbalance For Machine Learning Algorithms In Software Defect Prediction}, keyword = {critical level, machine learning, software defect prediction}, publisher = {Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font