Pregled bibliografske jedinice broj: 882023
Short-term forecasting of natural gas prices using machine learning and feature selection algorithms
Short-term forecasting of natural gas prices using machine learning and feature selection algorithms // Energy (Oxford), 140 (2017), 1; 893-900 doi:10.1016/j.energy.2017.09.026 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 882023 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Short-term forecasting of natural gas prices using machine learning and feature selection algorithms
Autori
Čeperić, Ervin ; Žiković, Saša ; Čeperić, Vladimir
Izvornik
Energy (Oxford) (0360-5442) 140
(2017), 1;
893-900
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Natural gas, Henry hub, Machine learning, Feature selection algorithm, Support vector regression machines, Neural networks
Sažetak
We present the results of short-term forecasting of Henry Hub spot natural gas prices based on the performance of classical time series models and machine learning methods, specifically ; neural networks (NN) and strategic seasonality-adjusted support vector regression machines(SSA-SVR). We introduce several improvements to the forecasting method based on SVR. A procedure for generation of model inputs and model input selection using feature selection (FS) algorithms is suggested. The use of FS algorithms for automatic selection of model input and the use of advanced global optimization technique PSwarm for the optimization of SVR hyper parameters reduce the subjective inputs. Our results show that the machine learning results reported in the literature often over exaggerate the successfulness of these models since, in some cases, we record only slight improvements over the time series approaches. We have to emphasize that our findings apply to Henry Hub, a market which is known among traders as the “widow maker”. We find definite advantages of using FS algorithms to preselect the variables both in NN and SVR. Machine learning models without the preselection of variables are often inferior to time-series models in forecasting spot prices and in this case FS algorithms show their usefulness and strength.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-2203 - Ekonomski i socijalni učinci reformi energetskog sektora na održivi ekonomski rast (ESEESRSEG) (Vlahinić-Dizdarević, Nela, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Ekonomski fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- ASFA: Aquatic Science and Fisheries Abstracts
- BIOSIS Previews (Biological Abstracts)
- CAB Abstracts
- CA Search (Chemical Abstracts)
- Compendex (EI Village)
- Fluidex (Fluid Engineering Abstracts)
- Geobase
- GeoRef
- INSPEC
- METADEX: Metals Science
- Pollution Abstracts
- Scopus