Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 880705

Clustering-based Identification of MIMO Piecewise Affine Systems


Hure, Nikola; Vašak, Mario
Clustering-based Identification of MIMO Piecewise Affine Systems // Proceedings of the 21st International Conference on Process Control
Štrbské Pleso, Slovačka, 2017. str. 404-409 doi:10.1109/PC.2017.7976248 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 880705 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Clustering-based Identification of MIMO Piecewise Affine Systems

Autori
Hure, Nikola ; Vašak, Mario

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 21st International Conference on Process Control / - , 2017, 404-409

Skup
21st International Conference on Process Control

Mjesto i datum
Štrbské Pleso, Slovačka, 06.06.2017. - 09.06.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Clustering-based identification, MIMO systems, Piecewise affine models, K-means++ algorithm
(Identifikacija zasnovana na uskupljavanju, MIMO sustavi, po dijelovima afini modeli, K-means++ algoritam)

Sažetak
PieceWise Affine (PWA) models are used to approximate general nonlinear dynamics with an arbitrary precision. PWA model can be employed for a constrained optimal controller synthesis, whereas the complexity of the controller is in a large part determined with a complexity of the model. Among the prominent methods for a PWA system identification is the clustering- based identification, which is originally designed for identification of systems with a Multiple-Input Single-Output (MISO) structure.When applied for the Multiple-Input Multiple-Output (MIMO) system identification, previously used clustering-based approach implied independent estimation of PWA maps for each of the outputs, whereas the MIMO PWA model was constructed by merging the polyhedral partitions and parameters of each MISO model. PWA model obtained with the respective approach often contained a significant number of submodels, thus aggravating the controller design process. In this paper we propose a multivariate linear regression approach for the identification of a MIMO PWA model based on the clustering technique. The presented approach is a systematic extension and fully exploits all benefits of the clustering- based identification. The proposed approach is validated on a coupled MIMO system identification problem.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mario Vašak (autor)

Avatar Url Nikola Hure (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Hure, Nikola; Vašak, Mario
Clustering-based Identification of MIMO Piecewise Affine Systems // Proceedings of the 21st International Conference on Process Control
Štrbské Pleso, Slovačka, 2017. str. 404-409 doi:10.1109/PC.2017.7976248 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Hure, N. & Vašak, M. (2017) Clustering-based Identification of MIMO Piecewise Affine Systems. U: Proceedings of the 21st International Conference on Process Control doi:10.1109/PC.2017.7976248.
@article{article, author = {Hure, Nikola and Va\v{s}ak, Mario}, year = {2017}, pages = {404-409}, DOI = {10.1109/PC.2017.7976248}, keywords = {Clustering-based identification, MIMO systems, Piecewise affine models, K-means++ algorithm}, doi = {10.1109/PC.2017.7976248}, title = {Clustering-based Identification of MIMO Piecewise Affine Systems}, keyword = {Clustering-based identification, MIMO systems, Piecewise affine models, K-means++ algorithm}, publisherplace = {\v{S}trbsk\'{e} Pleso, Slova\v{c}ka} }
@article{article, author = {Hure, Nikola and Va\v{s}ak, Mario}, year = {2017}, pages = {404-409}, DOI = {10.1109/PC.2017.7976248}, keywords = {Identifikacija zasnovana na uskupljavanju, MIMO sustavi, po dijelovima afini modeli, K-means++ algoritam}, doi = {10.1109/PC.2017.7976248}, title = {Clustering-based Identification of MIMO Piecewise Affine Systems}, keyword = {Identifikacija zasnovana na uskupljavanju, MIMO sustavi, po dijelovima afini modeli, K-means++ algoritam}, publisherplace = {\v{S}trbsk\'{e} Pleso, Slova\v{c}ka} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font