Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 878627

Band-Structure of Ultra-Thin InGaAs Channels: Impact of Biaxial Strain and Thickness Scaling


Sabina Krivec, Mirko Poljak, Tomislav Suligoj
Band-Structure of Ultra-Thin InGaAs Channels: Impact of Biaxial Strain and Thickness Scaling // Proceedings of the 40th International Convention MIPRO 2017 / Biljanović, Petar (ur.).
Rijeka, 2017. str. 74-80 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 878627 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Band-Structure of Ultra-Thin InGaAs Channels: Impact of Biaxial Strain and Thickness Scaling

Autori
Sabina Krivec, Mirko Poljak, Tomislav Suligoj

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 40th International Convention MIPRO 2017 / Biljanović, Petar - Rijeka, 2017, 74-80

ISBN
978-953-233-093-9

Skup
40th International Convention MIPRO 2017 - Microelectronics, Electronics and Electronic Technology (MEET)

Mjesto i datum
Opatija, Hrvatska, 22.05.2017. - 26.05.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
InGaAs ; tight-binding model ; strain ; Fermi level pinning ; interface charge ; ultra-thin body ; electron mobility

Sažetak
The band-structure of ultra-thin InGaAs layers is calculated using a nearest neighbor sp3d5s* tight binding approach to assess the impact of compressive and tensile biaxial strain on effective in-plane masses, non-parabolicity factor α, and conduction band minimum (CBM) shift down to channel thicknesses of 4 nm. The reported results show that the effective mass increases with body thickness decrease, whereas it decreases with the strain increase from compressive to tensile. Furthermore, the difference between the position of pinned Fermi level and CBM increases with strain. The impact of band-structure effects on electron transport is demonstrated for the InGaAs-OI structure. The extracted band-structure parameters provide electron mobility results consistent with experiments. Our calculations make it possible to assess the electron mobility in a wide range of both compressive and tensile strain values and body thicknesses from 15 nm down to 4 nm.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-9006 - Poluvodički elementi visokih performansi za primjene u sklopovima za bežične komunikacije i optičke detektore (HiPerSemi) (Suligoj, Tomislav, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Sabina Krivec (autor)


Citiraj ovu publikaciju:

Sabina Krivec, Mirko Poljak, Tomislav Suligoj
Band-Structure of Ultra-Thin InGaAs Channels: Impact of Biaxial Strain and Thickness Scaling // Proceedings of the 40th International Convention MIPRO 2017 / Biljanović, Petar (ur.).
Rijeka, 2017. str. 74-80 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Sabina Krivec, Mirko Poljak, Tomislav Suligoj (2017) Band-Structure of Ultra-Thin InGaAs Channels: Impact of Biaxial Strain and Thickness Scaling. U: Biljanović, P. (ur.)Proceedings of the 40th International Convention MIPRO 2017.
@article{article, editor = {Biljanovi\'{c}, P.}, year = {2017}, pages = {74-80}, keywords = {InGaAs, tight-binding model, strain, Fermi level pinning, interface charge, ultra-thin body, electron mobility}, isbn = {978-953-233-093-9}, title = {Band-Structure of Ultra-Thin InGaAs Channels: Impact of Biaxial Strain and Thickness Scaling}, keyword = {InGaAs, tight-binding model, strain, Fermi level pinning, interface charge, ultra-thin body, electron mobility}, publisherplace = {Opatija, Hrvatska} }
@article{article, editor = {Biljanovi\'{c}, P.}, year = {2017}, pages = {74-80}, keywords = {InGaAs, tight-binding model, strain, Fermi level pinning, interface charge, ultra-thin body, electron mobility}, isbn = {978-953-233-093-9}, title = {Band-Structure of Ultra-Thin InGaAs Channels: Impact of Biaxial Strain and Thickness Scaling}, keyword = {InGaAs, tight-binding model, strain, Fermi level pinning, interface charge, ultra-thin body, electron mobility}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font