Pregled bibliografske jedinice broj: 873941
Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm
Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm // MIPRO proceedings 2017 / Biljanović, Petar (ur.).
Opatija, Hrvatska: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2017. str. 343-348 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 873941 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Hilbert Transform Based Paroxysmal Tachycardia
Detection Algorithm
Autori
Čuljak, Ivana ; Cifrek, Mario
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Izvornik
MIPRO proceedings 2017
/ Biljanović, Petar - : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2017, 343-348
ISBN
978-953-233-093-9
Skup
MIPRO 2017 - 40th jubilee international convention on information and communication technology, electronics and microelectronics
Mjesto i datum
Opatija, Hrvatska, 22.05.2017. - 26.05.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Paroxysmal tachycardia ; ECG ; QRS complex ; Hilbert transform ; MATLAB ; Pan-Tompkins algorithm
Sažetak
Paroxysmal tachycardia (supraventricular and ventricular) is an episodic condition with an abrupt onset and termination followed by a rapid heart rate, usually between 140 and 250 beats per minute. Paroxysmal tachycardia can be discovered by detecting a QRS complex in ECG signals. Supraventricular tachycardia is characterized by a narrow QRS complex, and on the other side, ventricular tachycardia is characterized by a broad QRS complex. Detecting paroxysmal tachycardia can prevent pathogenesis of a heart disease. Implementation of an algorithm for QRS detection based on properties of the Hilbert transform is proposed in this paper. The results of the algorithm were compared with the Pan- Tompkins algorithm and the detection efficiency of the implemented algorithm on the used signals was 97.5 %. Both algorithms were tested using the recordings from the MIT-BIH Arrhythmia database.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb