Pregled bibliografske jedinice broj: 868379
Early Warning of Large Volatilities Based on Recurrence Interval Analysis in Chinese Stock Markets
Early Warning of Large Volatilities Based on Recurrence Interval Analysis in Chinese Stock Markets // Quantitative finance, 16 (2016), 11; 1713-1724 doi:10.1080/14697688.2016.1175656 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 868379 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Early Warning of Large Volatilities Based on Recurrence Interval Analysis in Chinese Stock Markets
Autori
Jiang, Z.-Q. ; Canabarro, A. A. ; Podobnik, Boris ; Stanley, H E ; Zhou, W.-X.
Izvornik
Quantitative finance (1469-7688) 16
(2016), 11;
1713-1724
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Extreme volatility ; Risk estimation ; Recurrence interval ; Large volatility forecasting ; Distribution ; Hazard probability
Sažetak
Forecasting extreme volatility is a central issue in financial risk management. We present a large volatility predicting method based on the distribution of recurrence intervals between successive volatilities exceeding a certain threshold Q , whichhasaone-to-onecorrespondencewiththeexpected recurrence time τ Q . We find that the recurrence intervals with large τ Q are well approximated by the stretched exponential distribution for all stocks. Thus, an analytical formula for determining the hazard probability W ( " t | t ) that a volatility above Q will occur within a short interval " t if the last volatility exceeding Q happened t periods ago can be directly derived from the stretched exponential distribution, which is found to be in good agreement with the empirical hazard probability from real stock data. Using these results, we adopt a decision-making algorithm for triggering the alarm of the occurrence of the next volatility above Q based on the hazard probability. Using the ‘receiver operator characteristic’ analysis, we find that this prediction method efficiently forecasts the occurrence of large volatility events in real stock data. Our analysis may help us better understand reoccurring large volatilities and quantify more accurately financial risks in stock markets
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija
POVEZANOST RADA
Projekti:
114-0352827-1370 - Istraživanje dugodosežnih korelacija i stohastično modeliranje na nivou stanice
Ustanove:
Građevinski fakultet, Rijeka,
Zagrebačka škola ekonomije i managementa, Zagreb
Profili:
Boris Podobnik
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- EconLit