Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 865440

Robust nonlinear regression in enzyme kinetic parameters estimation


Marasović, Maja; Marasović, Tea; Miloš, Mladen
Robust nonlinear regression in enzyme kinetic parameters estimation // Journal of Chemistry, 2017 (2017), 6560983, 12 doi:10.1155/2017/6560983 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 865440 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Robust nonlinear regression in enzyme kinetic parameters estimation

Autori
Marasović, Maja ; Marasović, Tea ; Miloš, Mladen

Izvornik
Journal of Chemistry (2090-9063) 2017 (2017); 6560983, 12

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
enzyme kinetics ; Michaelis-Menten ; robust nonlinear regression

Sažetak
Accurate estimation of essential enzyme kinetic parameters, such as Km and Vmax, is very important in modern biology. To this date, linearization of kinetic equations is still widely established practice for determining these parameters in chemical and enzyme catalysis. Although simplicity of linear optimization is alluring, these methods have certain pitfalls due to which they more often then not result in misleading estimation of enzyme parameters. In order to obtain more accurate predictions of parameter values, the use of nonlinear least- squares fitting techniques is recommended. However, when there are outliers present in the data, these techniques become unreliable. This paper proposes the use of a robust nonlinear regression estimator based on modified Tukey’s biweight function that can provide more resilient results in the presence of outliers and/or influential observations. Real and synthetic kinetic data have been used to test our approach. Monte Carlo simulations are performed to illustrate the efficacy and the robustness of the biweight estimator in comparison with the standard linearization methods and the ordinary least- squares nonlinear regression. We then apply this method to experimental data for the tyrosinase enzyme (EC 1.14.18.1) extracted from Solanum tuberosum, Agaricus bisporus, and Pleurotus ostreatus. The results on both artificial and experimental data clearly show that the proposed robust estimator can be successfully employed to determine accurate values of Km and Vmax.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Računarstvo, Farmacija



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-6897 - Istraživanje bioaktivnih spojeva iz dalmatinskog bilja: njihov antioksidacijski karakter i utjecaj na enzimsku inhibiciju i zdravlje (BioActCom) (Miloš, Mladen, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Kemijsko-tehnološki fakultet, Split,
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Maja Marasović (autor)

Avatar Url Mladen Miloš (autor)

Avatar Url Tea Marasović (autor)

Poveznice na cjeloviti tekst rada:

doi www.hindawi.com

Citiraj ovu publikaciju:

Marasović, Maja; Marasović, Tea; Miloš, Mladen
Robust nonlinear regression in enzyme kinetic parameters estimation // Journal of Chemistry, 2017 (2017), 6560983, 12 doi:10.1155/2017/6560983 (međunarodna recenzija, članak, znanstveni)
Marasović, M., Marasović, T. & Miloš, M. (2017) Robust nonlinear regression in enzyme kinetic parameters estimation. Journal of Chemistry, 2017, 6560983, 12 doi:10.1155/2017/6560983.
@article{article, author = {Marasovi\'{c}, Maja and Marasovi\'{c}, Tea and Milo\v{s}, Mladen}, year = {2017}, pages = {12}, DOI = {10.1155/2017/6560983}, chapter = {6560983}, keywords = {enzyme kinetics, Michaelis-Menten, robust nonlinear regression}, journal = {Journal of Chemistry}, doi = {10.1155/2017/6560983}, volume = {2017}, issn = {2090-9063}, title = {Robust nonlinear regression in enzyme kinetic parameters estimation}, keyword = {enzyme kinetics, Michaelis-Menten, robust nonlinear regression}, chapternumber = {6560983} }
@article{article, author = {Marasovi\'{c}, Maja and Marasovi\'{c}, Tea and Milo\v{s}, Mladen}, year = {2017}, pages = {12}, DOI = {10.1155/2017/6560983}, chapter = {6560983}, keywords = {enzyme kinetics, Michaelis-Menten, robust nonlinear regression}, journal = {Journal of Chemistry}, doi = {10.1155/2017/6560983}, volume = {2017}, issn = {2090-9063}, title = {Robust nonlinear regression in enzyme kinetic parameters estimation}, keyword = {enzyme kinetics, Michaelis-Menten, robust nonlinear regression}, chapternumber = {6560983} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • AGRICOLA
  • CAB Abstracts
  • EMBASE (Excerpta Medica)
  • Global Health


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font