Pregled bibliografske jedinice broj: 857697
Extractors in Paley graphs : a random model
Extractors in Paley graphs : a random model // Euoropean journal of combinatorics, 54 (2016), 154-162 doi:10.1016/j.ejc.2015.12.009 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 857697 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Extractors in Paley graphs : a random model
Autori
Mrazović, Rudi
Izvornik
Euoropean journal of combinatorics (0195-6698) 54
(2016);
154-162
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Payley graphs ; randomness extractors
Sažetak
A well-known conjecture in analytic number theory states that for every pair of sets $X, Y\subset\mathbb{; ; ; ; Z}; ; ; ; /p\mathbb{; ; ; ; Z}; ; ; ; $, each of size at least $\log ^C p$ (for some constant $C$) we have that for $(\frac12+o(1))|X||Y|$ of the pairs $(x, y)\in X\times Y$, $x+y$ is a quadratic residue modulo $p$. We address the probabilistic analogue of this question, that is for every fixed $\delta>0$, given a finite group $G$ and $A\subset G$ a random subset of density $\frac12$, we prove that with high probability for all subsets $|X|, |Y|\geq \log ^{; ; ; ; 2+\delta}; ; ; ; |G|$ for $(\frac12+o(1))|X||Y|$ of the pairs $(x, y)\in X\times Y$ we have $xy\in A$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Rudi Mrazović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet