Pregled bibliografske jedinice broj: 855980
Second-Order Computational Homogenization Approach Using Higher-Order Gradients at Microlevel
Second-Order Computational Homogenization Approach Using Higher-Order Gradients at Microlevel // 14th International Conference on Fracture and Damage Mechanics, Advances in Fracture and Damage Mechanics XV, Budva, 2015. / Bajić, D., Tonković, Z., Aliabadi, M.H.F (ur.).
Budva, Crna Gora, 2015. (plenarno, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 855980 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Second-Order Computational Homogenization Approach Using Higher-Order Gradients at Microlevel
Autori
Lesičar, Tomislav ; Tonković, Zdenko ; Sorić, Jurica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
14th International Conference on Fracture and Damage Mechanics, Advances in Fracture and Damage Mechanics XV, Budva, 2015.
/ Bajić, D., Tonković, Z., Aliabadi, M.H.F - , 2015
Skup
14th International Conference on Fracture and Damage Mechanics
Mjesto i datum
Budva, Crna Gora, 21.09.2015. - 23.09.2015
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
heterogeneous materials ; C1 finite element ; C1 continuity microlevel ; second-order computational homogenization ; gradient generalized periodic boundary conditions
Sažetak
Realistic description of heterogeneous material behavior demands more accurate modeling at macroscopic and microscopic scales. To observe strain localization phenomena and material softening occurring at the microstructural level, an analysis on the microlevel is unavoidable. Multiscale techniques employing several homogenization schemes can be found in literature. Widely used second-order homogenization requires C1 continuity at the macrolevel, while standard C0 continuity has usually been hold at microlevel. However, due to the C1-C0 transition macroscale variables cannot be defined fully consistently. The present contribution is concerned with a multiscale second-order computational homogenization employing C1 continuity at both scales under assumptions of small strains and linear elastic material behavior. All algorithms derived are implemented into the FE software ABAQUS. The numerical efficiency and accuracy of the proposed computational strategy is demonstrated by modeling three point bending test of the notched specimen.
Izvorni jezik
Engleski