Pregled bibliografske jedinice broj: 855546
3rd Class Circular Curves in Quasi-Hyperbolic Plane Obtained by Projective Mapping
3rd Class Circular Curves in Quasi-Hyperbolic Plane Obtained by Projective Mapping // KoG : znanstveno-stručni časopis Hrvatskog društva za konstruktivnu geometriju i kompjutorsku grafiku, 20 (2016), 8-15 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 855546 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
3rd Class Circular Curves in Quasi-Hyperbolic Plane Obtained by Projective Mapping
Autori
Halas, Helena ; Jurkin, Ema
Izvornik
KoG : znanstveno-stručni časopis Hrvatskog društva za konstruktivnu geometriju i kompjutorsku grafiku (1331-1611) 20
(2016);
8-15
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
projectivity, circular curve of the 3rd class, quasi-hyperbolic plan
Sažetak
The metric in the quasi-hyperbolic plane is induced by an absolute figure FQH ={; ; F, f1, f2}; ; , consisting of two real lines f1 and f2 incident with the real point F. A curve of class n is circular in the quasi-hyperbolic plane if it contains at least one absolute line. The curves of the 3rd class can be obtained by projective mapping, i.e. obtained by projectively linked pencil of curves of the 2nd class and range of points. In this article we show that the circular curves of the 3rd class of all types, depending on their position to the absolute figure, can be constructed with projective mapping
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Građevinski fakultet, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Mathematical Reviews